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Abstract

Contribution. This work probes the failure modes of frontier language models (LMs) when
reasoning over synthetic causal worlds, with an emphasis on counterfactual reasoning, logical
reasoning, abstract reasoning, and program synthesis. Models were tested on CausalARC: an
experimental testbed for Al reasoning in low-data and out-of-distribution regimes [1], modeled
after the Abstraction and Reasoning Corpus (ARC) [2]. Each reasoning task is sampled from a fully
specified causal world model, formally expressed as a structural causal model (SCM). Principled
data augmentations provide observational, interventional, and counterfactual feedback about
the world model in the form of few-shot, in-context learning demonstrations. Within- and
between-model performance varied heavily across tasks, indicating room for significant
iImprovement in LM reasoning.

Background

ARC-AGI Benchmark for Fluid Intelligence. ARC [2] is a grid world of two-dimensional arrays
(1x1 to 30x30) where pixels can take on one of ten colors each. The test-taker must solve
each task by discovering the deterministic rule or transformation that maps input arrays x
to output arrays y. Each task provides approximately 2-5 input-output pairs (x,y) as
examples to demonstrate the rule, with no additional clues provided. An average human
should ostensibly be able to solve most or all tasks from these demonstrations alone, with
no specialized knowledge or training. Instead, problem-solving requires innate cognitive
priors (elementary arithmetic, basic geometry, intuitive physics, etc.).
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Fig 1. Example input-output pairs from ARC-AGI-1 and ARC-AGI-2.

Structural Causal Model (SCM). An SCM is a tuple M := ( U, p(u), V, F ) where U is the set of
exogenous variables explained by mechanisms external to M, p(u) is the distribution over U, V is
the set of endogenous variables explained by variables in U U V, and F is the set of structural
functions such that v, = f,(pa,;, u;) for endogenous parent set pa,; and exogenous context u; [3].

Counterfactual. Let M, be the submodel of M induced by an intervention on Xin V. Let Y in V be
a variable whose value we wish to query. The counterfactual Y, under model M is then expressed
as Y, (u) :=Y,, (u). For example, when Y, (u) = y: “Y would have been y had X been x when U =u.”

The Pearl Causal Hierarchy (PCH). Let M be a fully specified SCM. The PCH is the set of all
observational (layer L1), interventional (layer L2), and counterfactual (layer L3) distributions
induced by M [3].

Fig 2. The PCH: observing factual realities (L1), exerting actions to induce interventional realities (L2), and imagining alternate counterfactual realities (L3).
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Stress-Testing Reasoning with Causal World Models

The CausalARC Reasoning Testbed
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Fig 3. The CausalARC testbed.

Reasoning tasks as generative models. From Fig 3: (A) First, SCM M is transcribed in Python
code. (B) Input-output pairs are randomly sampled, providing observational (L1) learning signals
about the world model. (C) Sampling from interventional submodels M’ of M vyields
interventional (L2) samples (x',y'). Given pair (x,y), performing multiple interventions while
holding the exogenous context constant yields a set of counterfactual (L3) pairs. (D) Using L1 and
L3 pairs as in-context demonstrations, we can generate LM prompts for diverse reasoning tasks.
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Fig 4. Example demonstration pairs for CausalARC themes.
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Fig 5. Unlike real-world data settings, counterfactuals can be jointly observed in the synthetic causal worlds of CausalARC.
L1, L2, and L3 denote the rungs of the PCH (Fig 2). Figure adapted from [3].

Jointly observed counterfactuals. From Fig 5: (A) The distribution over the exogenous
context (i.e., the external state). (B) Transformations applied to the exogenous context
(e.g., functions F in the observational world; updated functions F,under intervention a).
(C) Induced distributions, following from the applied transformation. (D) CausalARC
samples from each rung of the PCH.
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Fig 6. Examples of hard interventions, soft interventions, and the causal graph for a CausalARC task.
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Empirical Results

Abstract Reasoning with Test-Time Training (TTT). To gauge the difficulty of CausalARC, we
benchmarked MARC with TTT on the full static dataset [4]. MARC was the second-place paper
winner for ARC-AGI-1. It takes a neural transduction approach using a Llama 3 8B base model
fine-tuned on large ARC-like datasets, with TTT plus in-context learning at inference.
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Fig 7. (Left) Accuracy on the full CausalARC static dataset (50 tasks) by theme for MARC with TTT (Llama 3 8B base).
(Right) Performance on logical and, or, and xor tasks sampled from SCMdky5 as array size increases.

MARC’s overall accuracy of 46% on CausalARC is similar to its pure transduction score of 47.1%
accuracy on ARC-AGI-1, suggesting that CausalARC is of comparable difficulty to ARC-AGI-1.

Reasoning with Few-Shot, In-Context Learning. We tested three settings:

1. Counterfactual reasoning (CR). Predict counterfactual array y’ given an intervention on x.
2. Program synthesis for abstract reasoning (PS). Output Python code that generates y given x.
3. Logical reasoning (LR). Identify logical functions governing parent-child relationships in (x, y).

CR LR PS

Transduction vs Induction. Setting (1)
represents neural transduction (i.e.,
the output is directly predicted),
while (2) represents neural induction
(i.,e., the LM generates a program
implementing the transformation
rule, which is executed to obtain the
output array).
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Setup. Each task used five prompts
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Fig 8. Accuracy on CR, LR, and PS.

FSO FSR

Claude Opus 4.5 (H) 46.67 71.40 Rank
Gemini 3 Pro (H){60.00 76.10 B
Gpr-5.2 «H) SHCom 2
Grok 4 (H)68.33 47.50 66.20 2
03 (H)1{58.33 60.00 ( B
o4-mini (H)_ 47.50 - . 6
25 50 75 25 50 75 25 50 75 25 50 75 50 75

Accuracy

Fig 9. Accuracy with max reasoning effort on CR (six counting, extension, and ordering tasks), LR (three tasks), and PS (four counting and extension tasks).
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