
Stress-Testing Reasoning with Causal World Models

Jacqueline Maasch
Cornell Tech, New York, NY

John Kalantari
YRIKKA, New York, NY

Kia Khezeli
YRIKKA, New York, NY

Abstract

This work probes the failure modes of frontier language models when reasoning
over synthetic causal worlds, with an emphasis on counterfactual reasoning, logical
reasoning, and abstract reasoning with program synthesis. Performance varied
widely between and within tasks, with some models displaying greater aptitude for
either transduction or induction tasks.

Introduction Humans are exceptional few- and zero-shot learners that use internal representations
of the world to reason and plan in uncertain environments [9, 13, 14]. These internal world models can
encode beliefs about cause-effect relationships, supporting reasoning at all three levels of the Pearl
Causal Hierarchy (PCH): observing factual realities (L1), exerting actions to induce interventional
realities (L2), and imagining alternate counterfactual realities (L3) [1]. Though causal reasoning
is a hallmark of human cognition [6] and a desideratum for human-like AI [20, 12], state-of-the-
art language models (LMs) do not yet display robust reasoning at all three levels of the PCH
[11, 8, 27, 24, 10, 15]. Construct validity is a persistent challenge in LM reasoning evaluation
[3, 2, 22], and causal reasoning benchmarks often suffer from critical design flaws (e.g., data
contamination or weak theoretical justifications) [26]. To address the need for improved evaluation
frameworks, we explore the utility of causal world modeling in reasoning evaluation.

A Framework for Stress-Testing Reasoning This work probes the failure modes of LMs when
performing abstract, logical, and counterfactual reasoning tasks from the CausalARC testbed (Fig. 1)
[16]. Tasks are sampled from ground truth causal world models expressed as probabilistic structural
causal models (SCMs) [20, 21]. Given a fully specified SCM, all three levels of the PCH are well-
defined: any L1, L2, or L3 query about the world model can be answered [1]. By framing each
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Figure 1: The CausalARC testbed [16], an extension of ARC-AGI [4, 5] (https://arcprize.org/arc-agi).
(A) First, SCM M is manually transcribed in Python code. (B) Input-output pairs (x,y) are randomly
sampled, providing L1 learning signals about the deterministic transformation that maps inputs to
outputs. (C) Sampling from interventional submodels M′ of M yields L2 samples (x′,y′). Given
(x,y), performing multiple interventions while holding the exogenous context constant yields a set of
L3 pairs. (D) L1, L2, and/or L3 pairs provide in-context demonstrations for natural language prompts.
(E–H) As in ConceptARC [19], tasks are annotated by theme for detailed error analyses. Code and
data can be found at our project page: https://jmaasch.github.io/carc/
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Figure 2: Accuracy with maximum reasoning effort on CR (six counting, extension, and ordering
tasks), LR (three logical tasks), and PS (four counting and extension tasks). Each task used five
prompts with random L1 examples and five with alternating L1/L3 examples (see [16]). CR prompts
used three input-output demonstrations, LR used four, and PS used six. Performance ranged more on
CausalARC than FrontierScience-Olympiad (FSO) and Research (FSR; as reported by OpenAI).

task as a generative model, robustness can be benchmarked with respect to a distribution of task
instances. Generative benchmarks buffer against static benchmark data leakage, a major challenge in
AI evaluation [17, 25, 15, 7]. ARC-like settings address the nontrivial challenge of differentiating true
reasoning from factual recall [10, 25, 17, 23], as abstract reasoning relies more on innate cognitive
priors than factual knowledge [4]. This formulation makes CausalARC an open-ended playground
for testing diverse reasoning hypotheses at all three levels of the PCH.

Experimental Settings We tested three settings with few-shot, in-context learning.

1. Counterfactual reasoning (CR). Predict the counterfactual array y′ given an intervention on x.
2. Program synthesis for abstract reasoning (PS). Output Python code that generates y given x.
3. Logical reasoning (LR). Identify logical functions governing parent-child relationships in (x,y).

Figure 3: Accuracy on CR, LR, and PS.

Setting (1) represents neural transduction (i.e.,
the output is directly predicted), while (2) repre-
sents neural induction (i.e., the LM generates a
program implementing the transformation rule,
which is executed to obtain the output array)
[18]. We evaluated impacts of prompt formu-
lation by varying the PCH level of in-context
examples (all L1 vs alternating L1/L3). An ar-
ray was deemed correct if all cells were correct.
Models were tested at their maximum reasoning
effort (H = high, xH = extra high) and/or default.

General Results LM rankings varied by task,
with no across-the-board winner (Figs. 2, 3).
While benchmarks like FrontierScience are a
tight race, LM performance varied widely on
CausalARC. Some models were better at trans-
duction than induction (e.g., Grok 4 (H), Nova)
or vice versa (e.g., Gemini 2.5 Flash, o4-mini).

Do L3 Examples Help? L3 in-context demon-
strations resulted in better or equal accuracy on
CR tasks for 11/17 LMs (64.7%; Fig. 3). L3
demonstrations rarely conferred benefits for LR
(2/15 LMs; 13.3%) or PS (2/13 LMs; 15.4%). Future work could explore the utility of fine-tuning on
synthetic L3 data, or the use of counterfactual consistency (equal accuracy on L1 vs L3 queries) as a
reward signal for reinforcement learning.

Speculations on Training CausalARC performance might provide hints about the closed-source
training regimes of proprietary models. Results include some evidence of fine-tuning for program syn-
thesis, reasoning with Boolean logic, and ARC-like abstract reasoning: o4-mini offered “ARC-style
input/output” unprompted; Claude Sonnet 4 volunteered to perform program synthesis unprompted
(and yet performed poorly on PS); and Grok 4 and Gemini 3 Pro were near-perfect on LR tasks.
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