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Outline for This Talk

1. Naive Plug-in Estimation: Why does this fail?
2. Existing Methods for Debiasing: TMLE
3. Our Method: KDPE!



MOtivation We have a fixed dataset { O;}'_;.
Example: ATE Estimation O; =X, Ap X)) ~iiq P*

X = (age, beer preference, etc.) A : Ad Assignment Y : Did they click?

Py




Motivation
Example: ATE Estimation

We have a fixed dataset { O;}_,. [Goal: From the data, we want a “good” estimator of useful quantities

0, = (XiyAp ) ~i1q P* W(P*) = EpulEps YA = 1X]] — Ep Eps[Y]A = 0.X]]

“Good Estimator”?

A. Enables Uncertainty Problem : P* = (PZ, P¥ , P¥ ) unknown!

oS Ul o AIX T YIAX
Quantification: tractable limiting
distribution via. CLT.

B. Data-efficient and consistent:
converges to truth faster with less e M nonparametric - i.e. unwilling to make strong

data .
assumptions about the unknown P*

o All we assume is that P* € M.

C. Retains simplicity of a plug-in
approach




What is naive plug-in estimation?

Estimate unknown components of distribution!




Naive Plug-in Estimation

Estimated Distribution:
P = (Py,P A|X> P Y|A,X)

P, : marginal empirical distribution
ﬁA=1|X . estimated propensities

Py_y14.x : conditional regression
func.

Target quantity of YA = LX =Bl _ff[Y‘A = 0.X]]
interest can be '
expressed as . J |
WM — | —_— N

w(P*)



What Went Wr()ng? w(P) = -p[ “plY|A = 1LX]] — Ep| -Ji[Y\A = 0.X]]

;: ..<
w(P) w(P*) '

Lemma 1:

n ] « ] «
p(P) = p(P¥) = — Z} 7p:(0) = — Z} 75(0) + 0pi(1/4/n)

—

—N(0,E[§75+]) ?
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Fig 1: Distribution of Naive Plug-in Estimates
over 350 simulations, n=300. Purple Curve: Plug-in Bias:

Distribution of an estimator v of Generally, doesn’t converge at the
w(P*) satisfying (A) and (B) appropriate rate!




Outline

1. Naive Plug-in Estimation: Why does this fail? “Good Estimator”?
_ _ _ - A. Enables Uncertainty
° Plug-ln bias fails criteria (A), (B) Quantification: tractable
limiting distribution via. CLIT.
2. Existing Methods for Debiasing: TMLE B. Data-efficient and
consistent: converges to
3. Our Method: KDPE! truth faster with less data

C. Retains simplicity of a
plug-in approach




How do we find plug-in bias free P € M from P?

How do we move in M ?

1. Scores: “directions” we can
move at P

2. MLE: Along the direction we
choose, how much do we move”?




Set-up

Tangent Spaces and Scores

Scores: One-Dimensional Sub-Models

p(e) = (1 —e)p® +ep = p°(1 + €h)

where

% — | is the “direction”

P




Set-up

Tangent Spaces and Scores

Tangent Space:

Ip=1{h:d¢,s.t.(14+€eh)pe M Ve <¢,}

yp € Ty is the direction of maximal change! PP e :,';ﬁ",' \ “~\\
- ¢' t' ,' ‘\ %S‘
T . é' ¢ [ W
yp=arg max V__gw([l+en]lp) : PR Iy
HhH=1,h€Tp . .



TMLE

van der Laan et. al. (2006)

(1): Construct the IF-based model:

p(0) = (1 + erpu(0)) p*(O)

/
;. ------ -i— -I\-/-I I-_-é- -S-é-};-s- -t-(; -6|-\-Ii_-9 ------- §/ \
:  consider moving in the 1




TMLE

van der Laan et. al. (2006)

(1): Construct the IF-based sub-model:

p(0) = (1 + e€fpo(0)) p*(0)

(2): Find €' by MLE to get update!

e’ = arg max Z log p(0,)
Coi=l

p'=ph =1+ e"p) p°




TMLE

van der Laan et. al. (2006)

Keep iterating this process until ¢ = 0!




TMLE

van der Laan et. al. (2006)

By FOC for MLE problem and € = 0,

Voo ¥ llog(1 + eip)(0) p/(O)] = ¥ (0 = 0! y P
= = w(P)  y(P) w(P*)



Drawbacks of TMLE

(and other IF-based methods)

1. To run TMLE, we need the influence function y, for each yr !

* Jordan et. al. (2022): “deriving the actual (IF) that yields bias adjustment may
require significant analytical effort.”

 Hines et. al. (2021): “derivation of the |IF often regarded as a ‘dark art’...not
given much attention in traditional statistics education... some steps appearing

as If from nowhere. ”

 Kennedy et. al. (2019): “many researchers find IF-based estimators to be
opaqgue or overly technical, which makes their use less prevalent and their

benefits less available”



Drawbacks of TMLE

(and other IF-based methods)

1. Need the influence function Y, for each quantity of interest y !

o Jordan et. al. (2022), Hines et. al. (2021), Kennedy et. al. (2019)

2. Final plug-in P? built for y doesn’t work for a different quantity of interest i/’



Outline

1. Naive Plug-in Estimation: Why does this fail?
* Plug-in bias fails criteria (A), (B)

2. Existing Methods for Debiasing: TMLE
* Fails criteria (C)

3. Our Method: KDPE!

“Good Estimator”?

A. Enables Uncertainty

Quantification: tractable
limiting distribution via. CLT.

B. Data-efficient: converges
to truth faster with less data

C. Retains simplicity of a
plug-in approach



Outline

1. Naive Plug-in Estimation: Why does this fail? “Good Estimator”?

: : : . A. Enables Uncertainty
* Plug-in bias fails criteria (A), (B) Quantification: tractable

limiting distribution via. CLT.

2. Existing Methods for Debiasing: TMLE

B. Data-efficient: converges

i i . to truth faster with less data
* Fails criteria (C)

C. Retgins simplicity of a
3. Our Method: KDPE! plug-in approach

Can we find a general plug-in distribution P’ that removes
plug-in bias for many estimands y/?



Kernel Debiased Plug-in Estimation

KDPE is a modified TMLE, with two major changes within in each iteration:

1. Only moving in the direction of yp = moving in dense subset of /!

2. Solving MLE fore € R = Solving MLE for a € R"



Reproducing Kernel Hilbert Spaces

“Kernel” Debiased Plug-in Estimation

What is a Reproducing Kernel Hilbert Space?

Technical Definition: Why use RKHS?
Kernel Function: K(O, O') = exp( —||O — O’H%)
1. Certain RKHS (i.e. those associated

with RBF Kernels) are sufficiently rich
spaces.

RKHS H: set of functions that satisfy the following:
1. K(O,-)e Hforany O € O

2. Vie H,O € O0,{f,K(O, -)) = f(0O) 2. Enables computationally tractable
optimization for MLE




KDPE

1. Use an RKHS-Based Sub-model, not IF-based one:

« Project universal RKHS H into tangent space 1 to
get RKHS Hp

Lemma 1: By the fact that our chosen
kernel K is universal, Hp, the projection of

RKHS H, is DENSE in the set of feasible
directions 1 and remains an RKHS.

. Construct RKHS-based model M PO

Mp={ (1+hp° h€Hn}nM M



KDPE

2. MLE determines both step size and
direction within M p.

Theorem (RKHS Representer):
For the MLE problem, defined as

pe=arg  max 3 log([1+h(0)Ip*0) )= Alhlly,
h€H,¢,(1+h)p’eM?), o :

n

The solution is given by /1™ = Z ai*Kpo(Oi, )




Theoretical Guarantees for KDPE

/ Key Takeaway \

Prop. 2: |
We are leveraging the first-
n order conditions, and NO'1" to
2 h(Ol) — () for ALL h € HPL” obtain some optimal solution /

approximate the influence

\ function 1n any way. J

=1




Theoretical Guarantees for KDPE

For many quantities | want to
estimate...

Theorem 2 (asymptotic linearity of KDPE). Let1) : M — R be a pathwise-differentiable functional of the distribution
P with influence function 1)p € L5(P) and von Mises expansion:

»(P) —¢Y(P) = /@pd(p — P)+ Ry(P,P) foranyP,P € M,

which defines the second-order reminder term Ry (P, P). Then, under necessary regularity conditions, the plug-in bias
satisfies P95 = op+(1/y/n) and the KDPE estimator satisfies

W(P) — Y(P*) = Ppibp- + op-(1/+/n) x> N(0, [¢bp-]2/n).

Plug-in Bias Disappears
appropriately!




Outline

1. Naive Plug-in Estimation: Why does this fail? “Good Estimator’?
* Plug-in bias fails criteria (A), (B) A. Enables Uncertainty
Quantification: tractable
2. Existing Methods for Debiasing: TMLE limiting distribution via. GLT.

B. Data-efficient: converges
to truth faster with less data

3. Our Method: KDPE! C. Retains simplicity of a

* Fails criteria (C)

plug-in approach

« Satisfies (A), (B), (C)

Can we find a general plug-in distribution P’ that removes
plug-in bias for many estimands /? KDPE!



Simulation Studies

@ KDPE
B TMLE

| DGP1

Density

Figure 1: Simulated distributions of {Z)\,\TE compared
to their asymptotic distributions. TMLE distribution
in the second row corresponds to LTMLE for DGP2.



Simulation Studies g =11 & B
\ Method
%‘ | \\ Sl
8 TARLE
/
, _ 4
S f VD, i
Method  vYare  Yrr  Yor ST T - ~. o
SL 0.0803 _ 0.2623 _ 0.6796 I
DGP1 TMLE [0.0574 0.1723 0.4059 ;| [k | @
KDPE [0.0592 0.1752 0.4303 AN\ A
SL 0.0508 0.0925 0.1555 Iy N i\
DGP2 LTMLE 0.0731 _0.1481 _0.2648 AN\ / N
KDPE [0.0295 0.0778 0.0827 y - —

Table 1: Root Mean Squared Error (RMSE) of KDPE,
(L)TMLE, and SL for DGP1, DGP2 : : X o ~ - :
Figure 2: Simulated distributions of ¥pr, ¥Yor. First
row corresponds to DGP1, and second row to DGP2.
Red line denotes true value of the target parameter.
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