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Outline for This Talk

1. Naive Plug-in Estimation: Why does this fail?


2. Existing Methods for Debiasing: TMLE


3. Our Method: KDPE!



Motivation
Example: ATE Estimation

We have a fixed dataset .{Oi}n
i=1

Oi = (Xi, Ai, Yi) ∼i.i.d. P*

A = 0

A = 1

X = (age, beer preference, etc.) Y : Did they click?A : Ad Assignment

Y1 = 1
Y2 = 0
Y5 = 1

Y3 = 1
Y4 = 0

X1

X2

X4

X5

P*A|X P*Y|A,XP*X



Motivation
Example: ATE Estimation

Oi = (Xi, Ai, Yi) ∼i.i.d. P*

We have a fixed dataset .{Oi}n
i=1 Goal: From the data, we want a “good” estimator of useful quantities


ψ(P*) = 𝔼P*[𝔼P*[Y |A = 1,X]] − 𝔼P*[𝔼P*[Y |A = 0,X]]

Problem :  unknown!


• All we assume is that .


•  nonparametric - i.e. unwilling to make strong 
assumptions about the unknown 

P* = (P*X , P*A|X, P*Y|A,X)

P* ∈ M

M
P*

“Good Estimator”? 
A. Enables Uncertainty 

Quantification: tractable limiting 
distribution via. CLT. 

B. Data-efficient and consistent: 
converges to truth faster with less 
data


C. Retains simplicity of a plug-in 
approach



What is naive plug-in estimation?

A = 0

A = 1

Y1 = 1
Y2 = 0
Y5 = 1

Y3 = 1
Y4 = 0

X1

X2

X4

X5

̂PA=1|X = g(X) ̂PY=1|A,X = f(A, X)̂PX(x) = n−1
n

∑
i=1

1[Xi = x]

Plug-in Estimate = ψ̂ = ψ( ̂P) = n−1
n

∑
i=1

f(1,Xi) − f(0,Xi)

Estimate unknown components of distribution!

P*A|X P*Y|A,XP*X



Naïve Plug-in Estimation
̂p

p*

ℝ

M

ψ(P) = 𝔼P[𝔼P[Y |A = 1,X]] − 𝔼P[𝔼P[Y |A = 0,X]]

ψ( ̂P) ψ(P*)

Estimated Distribution: 



•  marginal empirical distribution


•  estimated propensities


•  conditional regression 
func.

̂P = ( ̂PX, ̂PA|X, ̂PY|A,X)

̂Px :

̂PA=1|X :

̂PY=1|A,X :

Target quantity of 
interest can be 
expressed as 
ψ : M → ℝ



What went wrong?

Lemma 1:


ψ( ̂P) − ψ(P*) =
1
n

n

∑
i=1

ψ̃P*(Oi)

→N(0,𝔼[ψ̃2
P*])

−
1
n

n

∑
i=1

ψ̃ ̂P(Oi)

?

+ oP*(1/ n)

Fig 1: Distribution of Naïve Plug-in Estimates 

over 350 simulations, n=300. Purple Curve: 

Distribution of an estimator  of 
 satisfying (A) and (B)

ψ̂
ψ(P*)

Plug-in Bias: 
Generally, doesn’t converge at the


appropriate rate!

ψ(P) = 𝔼P[𝔼P[Y |A = 1,X]] − 𝔼P[𝔼P[Y |A = 0,X]]

ψ( ̂P) ψ(P*)



Outline

1. Naive Plug-in Estimation: Why does this fail?


• Plug-in bias fails criteria (A), (B) 


2. Existing Methods for Debiasing: TMLE


3. Our Method: KDPE!

“Good Estimator”? 
A. Enables Uncertainty 

Quantification: tractable 
limiting distribution via. CLT. 

B. Data-efficient and 
consistent: converges to 
truth faster with less data


C. Retains simplicity of a 
plug-in approach



How do we find plug-in bias free  from P ∈ M ̂P?

̂p

p*

1. Scores: “directions” we can 
move at 


2. MLE: Along the direction we 
choose, how much do we move?

̂P

How do we move in M?



Set-up
Tangent Spaces and Scores

Scores: One-Dimensional Sub-Models





where 


 is the “direction”

p(ϵ) = (1 − ϵ)p0 + ϵp = p0(1 + ϵh)

h =
p
p0

− 1

M

h

p

̂p ≡ p0



Set-up
Tangent Spaces and Scores

Tangent Space:


TP = {h : ∃ϵh s . t . (1 + ϵh) p ∈ M ∀ϵ ≤ ϵh}

M

x

̂p ≡ p0
TP0

h1 h2

h3

h4

h5…

ψ̃P0

 is the direction of maximal change! 

 

ψ̃P ∈ TP

ψ̃P = arg max
∥h∥=1,h∈TP

∇ϵ=0ψ( [1 + ϵh] p )



̂p ≡ p0

p0
ϵ

TMLE
van der Laan et. al. (2006)

(1): Construct the IF-based model:


p0
ϵ (O) = (1 + ϵψ̃P0(O)) p0(O)

TP0

M

TMLE says to ONLY 
consider moving in the 

direction of  !ψ̃P0 ∈ TP

p*



TMLE
van der Laan et. al. (2006)

̂p ≡ p0

p0
ϵ

p0
ϵ0 = p1

(1): Construct the IF-based sub-model:


p0
ϵ (O) = (1 + ϵψ̃P0(O)) p0(O)

(2): Find  by MLE to get update!  




ϵ0

ϵ0 = arg max
ϵ

n

∑
i=1

log p0
ϵ (Oi)

p1 = p0
ϵ0 = (1 + ϵ0ψ̃P0) p0

TP0

M

p*



TMLE
van der Laan et. al. (2006)

Keep iterating this process until  !ϵ = 0

̂p ≡ p0

p0
ϵ

p0
ϵ0 = p1

TP0

M
p1

ϵ

p0
ϵ0 = p1

p1
ϵ1 = p2

TP1

M

…
̂p ≡ p0

p* p*
p0

ϵ0 = p1

p1
ϵ1 = p2

pℓ
ϵℓ = pℓ = pℓ+1

TPℓ

M̂p ≡ p0

pℓ
ϵ

…
p*



TMLE
van der Laan et. al. (2006)

By FOC for MLE problem and 
ϵ = 0,

∇ϵ=0

n

∑
i=1

[log(1 + ϵψ̃Pℓ)(Oi) pℓ(Oi)] =
n

∑
i=1

ψ̃Pℓ(Oi) = 0!

pℓ
ϵℓ = pℓ = pℓ+1

M̂p ≡ p0

p*

ψ( ⋅ )

ψ( ̂P) ψ(P*)ψ(Pℓ)

Lemma 1:


ψ(Pℓ) − ψ(P*) ≈
1
n

n

∑
i=1

ψ̃P*(Oi) −
1
n

n

∑
i=1

ψ̃Pℓ(Oi)



Drawbacks of TMLE
(and other IF-based methods)

1. To run TMLE, we need the influence function  for each  !


• Jordan et. al. (2022): “deriving the actual (IF) that yields bias adjustment may 
require significant analytical effort.”


• Hines et. al. (2021): “derivation of the IF often regarded as a ‘dark art’…not 
given much attention in traditional statistics education… some steps appearing 
as if from nowhere. ”


• Kennedy et. al. (2019): “many researchers find IF-based estimators to be 
opaque or overly technical, which makes their use less prevalent and their 
benefits less available”


ψ̃P ψ



Drawbacks of TMLE
(and other IF-based methods)

1. Need the influence function  for each quantity of interest  !


• Jordan et. al. (2022), Hines et. al. (2021), Kennedy et. al. (2019)


2. Final plug-in  built for  doesn’t work for a different quantity of interest !

ψ̃P ψ

Pℓ ψ ψ′ 
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Outline
1. Naive Plug-in Estimation: Why does this fail?


• Plug-in bias fails criteria (A), (B) 


2. Existing Methods for Debiasing: TMLE


• Fails criteria (C) 

3. Our Method: KDPE!

“Good Estimator”? 
A. Enables Uncertainty 

Quantification: tractable 
limiting distribution via. CLT. 

B. Data-efficient: converges 
to truth faster with less data


C. Retains simplicity of a 
plug-in approach

Can we find a general plug-in distribution  that removes 
plug-in bias for many estimands ?

Pℓ

ψ



Kernel Debiased Plug-in Estimation

KDPE is a modified TMLE, with two major changes within in each iteration:


1. Only moving in the direction of  moving in dense subset of !


2. Solving MLE for Solving MLE for  

ψ̃P ⟹ TP

ϵ ∈ ℝ ⟹ α ∈ ℝn



Reproducing Kernel Hilbert Spaces
“Kernel” Debiased Plug-in Estimation

What is a Reproducing Kernel Hilbert Space?

Technical Definition: 
Kernel Function:  

RKHS : set of functions that satisfy the following: 
1.            for any  
2.           

K(O, O′ ) = exp( −∥O − O′ ∥2
2)

H
K(O, ⋅ ) ∈ H O ∈ 𝒪
∀f ∈ H, O ∈ 𝒪, ⟨ f, K(O, ⋅ )⟩ = f(O)

Why use RKHS? 

1. Certain RKHS (i.e. those associated 
with RBF Kernels) are sufficiently rich 
spaces. 

2. Enables computationally tractable 
optimization for MLE



1. Use an RKHS-Based Sub-model, not IF-based one: 

• Project universal RKHS  into tangent space  to 
get RKHS 


• Construct RKHS-based model 

H TP
HP

M̃P0

KDPE

M

xx
̂p ≡ p0

TP0TP0

HP0

Lemma 1: By the fact that our chosen 
kernel  is universal, , the projection of 
RKHS , is DENSE in the set of feasible 

directions  and remains an RKHS.

K HP
H

TP
h1

h2 h3

h4 h5 h6

…

M̃P0 = { (1 + h)p0 ; h ∈ HP0 } ∩ M



KDPE

M

xx
̂p ≡ p0

TP0TP0

HP0

Theorem (RKHS Representer):  
For the MLE problem, defined as 

 

The solution is given by 

h* = arg max
h∈HPℓ,(1+h)p0∈M̃0

P

n

∑
i=1

log( [1 + h(Oi)]p0(Oi) ) − λ∥h∥HP0

h* =
n

∑
i=1

α*i KP0(Oi, ⋅ )
h =

n

∑
i=1

α*i K(Oi, ⋅ )

2. MLE determines both step size and 
direction within .M̃P0

Like TMLE, iterate these updates until we reach a fixed point!

p*
(1 + h*)p0 = p1



Theoretical Guarantees for KDPE

Prop. 2:


 for ALL 
n

∑
i=1

h(Oi) = 0 h ∈ HPℓ



Theoretical Guarantees for KDPE

≈

n−1
n

∑
i=1

ψ̃P*(Oi) Plug-in Bias Disappears 
appropriately!

For many quantities I want to 
estimate…



Outline
1. Naive Plug-in Estimation: Why does this fail?


• Plug-in bias fails criteria (A), (B) 


2. Existing Methods for Debiasing: TMLE


• Fails criteria (C) 

3. Our Method: KDPE!


• Satisfies (A), (B), (C)

“Good Estimator”? 
A. Enables Uncertainty 

Quantification: tractable 
limiting distribution via. CLT. 

B. Data-efficient: converges 
to truth faster with less data


C. Retains simplicity of a 
plug-in approach

Can we find a general plug-in distribution  that removes 
plug-in bias for many estimands ? KDPE!

Pℓ

ψ
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