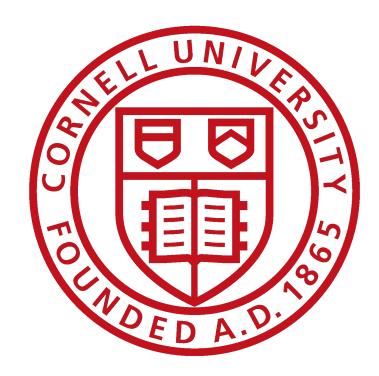
Kernel Debiased Plug-in Estimation INFORMS DMDA Workshop, 2023



Brian Cho, Yaroslav Mukhin, Kyra Gan, Ivana Malenica

Cornell University

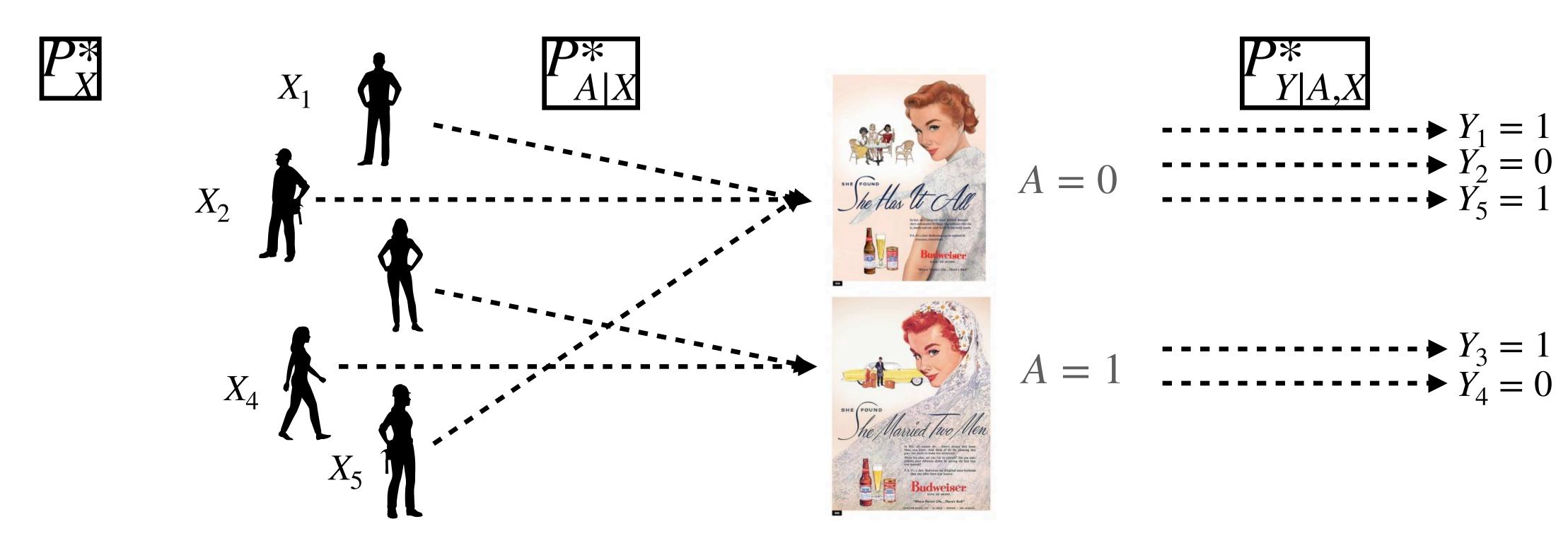
Outline for This Talk

- 3. Our Method: KDPE!

1. Naive Plug-in Estimation: Why does this fail? 2. Existing Methods for Debiasing: TMLE

Motivation **Example: ATE Estimation**

X = (age, beer preference, etc.) A : Ad Assignment



We have a fixed dataset $\{O_i\}_{i=1}^n$. $O_i = (X_i, A_i, Y_i) \sim_{i.i.d.} P^*$

Y : Did they click?

Motivation **Example: ATE Estimation**

We have a fixed dataset $\{O_i\}_{i=1}^n$.

 $O_i = (X_i, A_i, Y_i) \sim_{i.i.d.} P^*$

"Good Estimator"?

- **A. Enables Uncertainty Quantification:** tractable limiting distribution via. CLT.
- **B.** Data-efficient and consistent: converges to truth faster with less data
- **C. Retains simplicity** of a plug-in approach

Proble

Goal: From the data, we want a "good" estimator of useful quantities $\psi(P^*) = \mathbb{E}_{P^*}[\mathbb{E}_{P^*}[Y|A = 1,X]] - \mathbb{E}_{P^*}[\mathbb{E}_{P^*}[Y|A = 0,X]]$

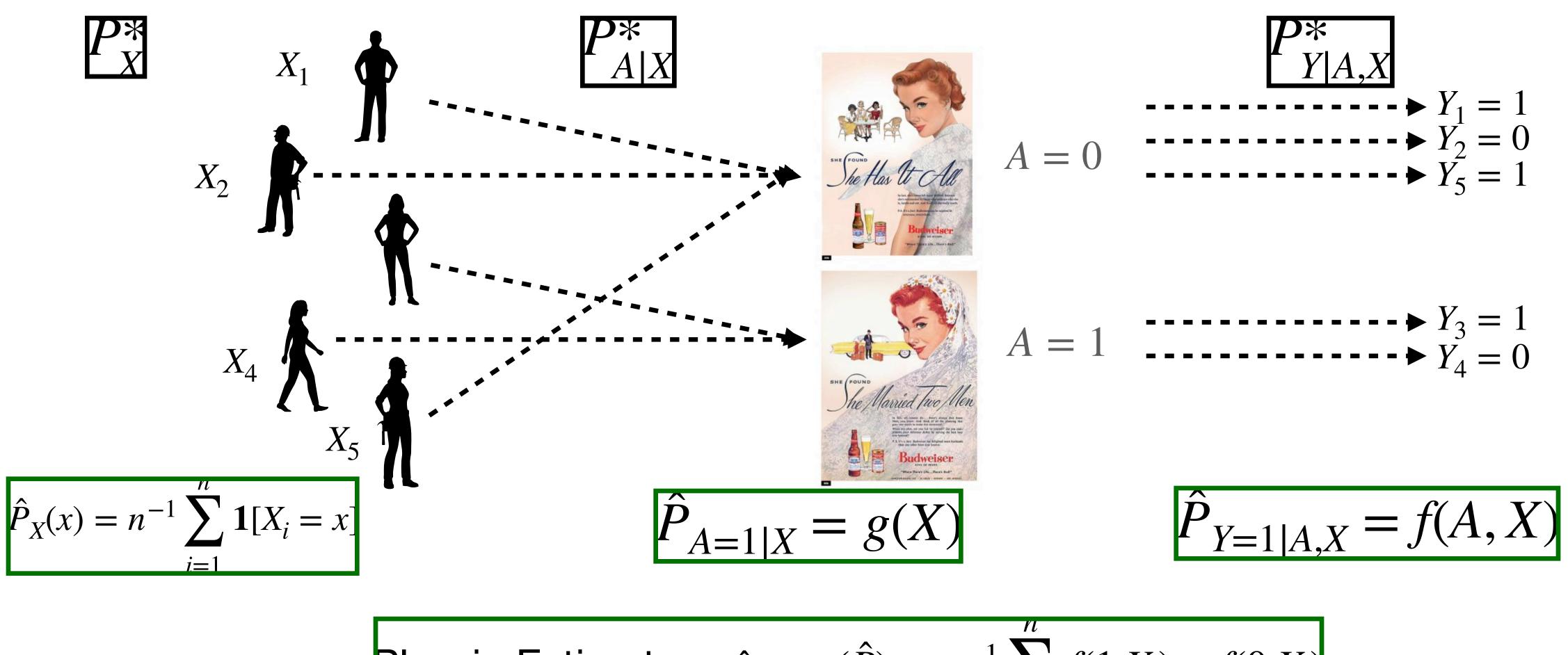
m :
$$P^* = (P^*_X, P^*_{A|X}, P^*_{Y|A,X})$$
 unknown!

• All we assume is that $P^* \in M$.

M nonparametric - i.e. unwilling to make strong assumptions about the unknown P^*

What is naive plug-in estimation?

Estimate unknown components of distribution!



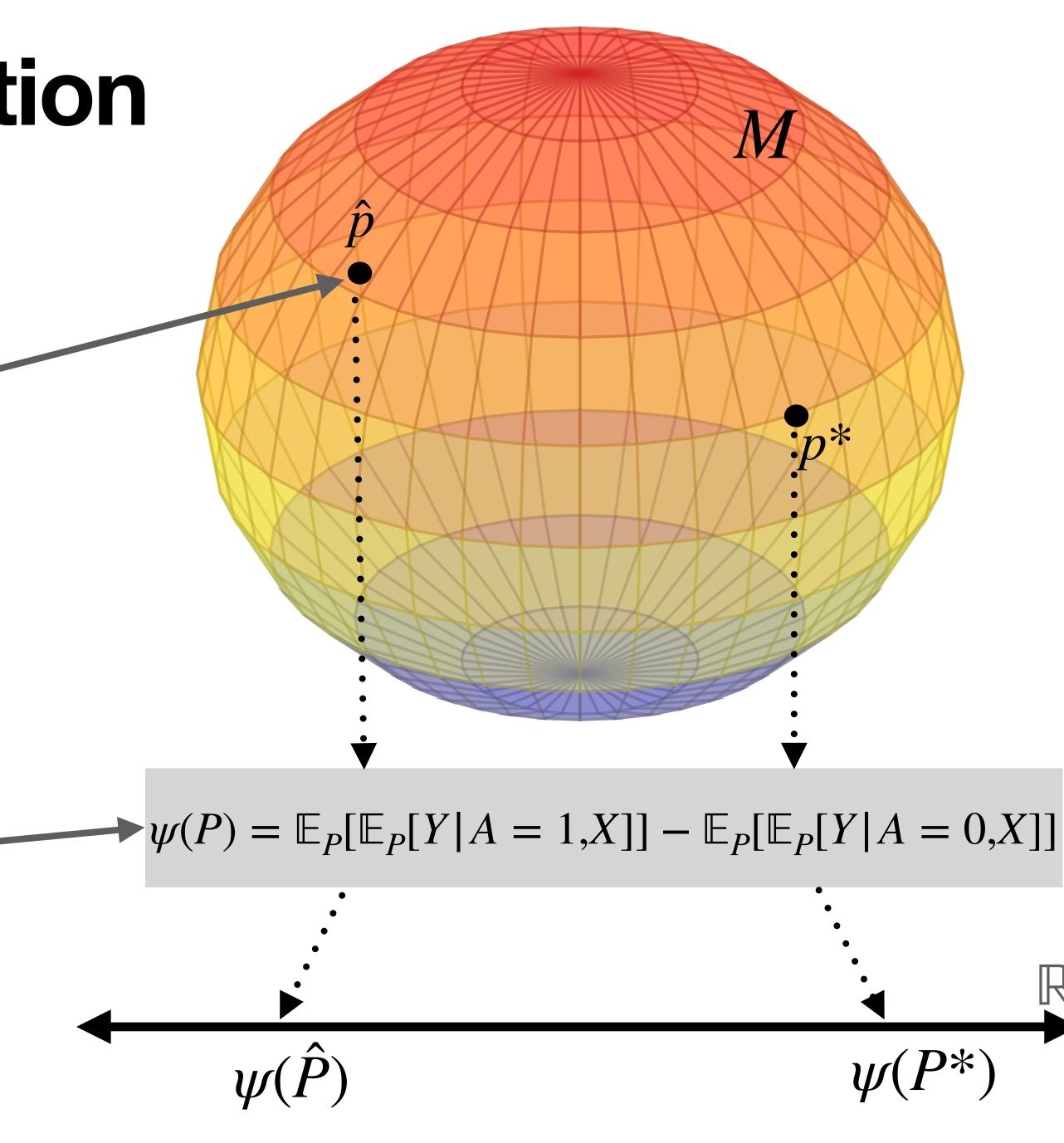
Plug-in Estimate = $\hat{\psi} = \psi(\hat{P}) = n^{-1} \sum f(1,X_i) - f(0,X_i)$

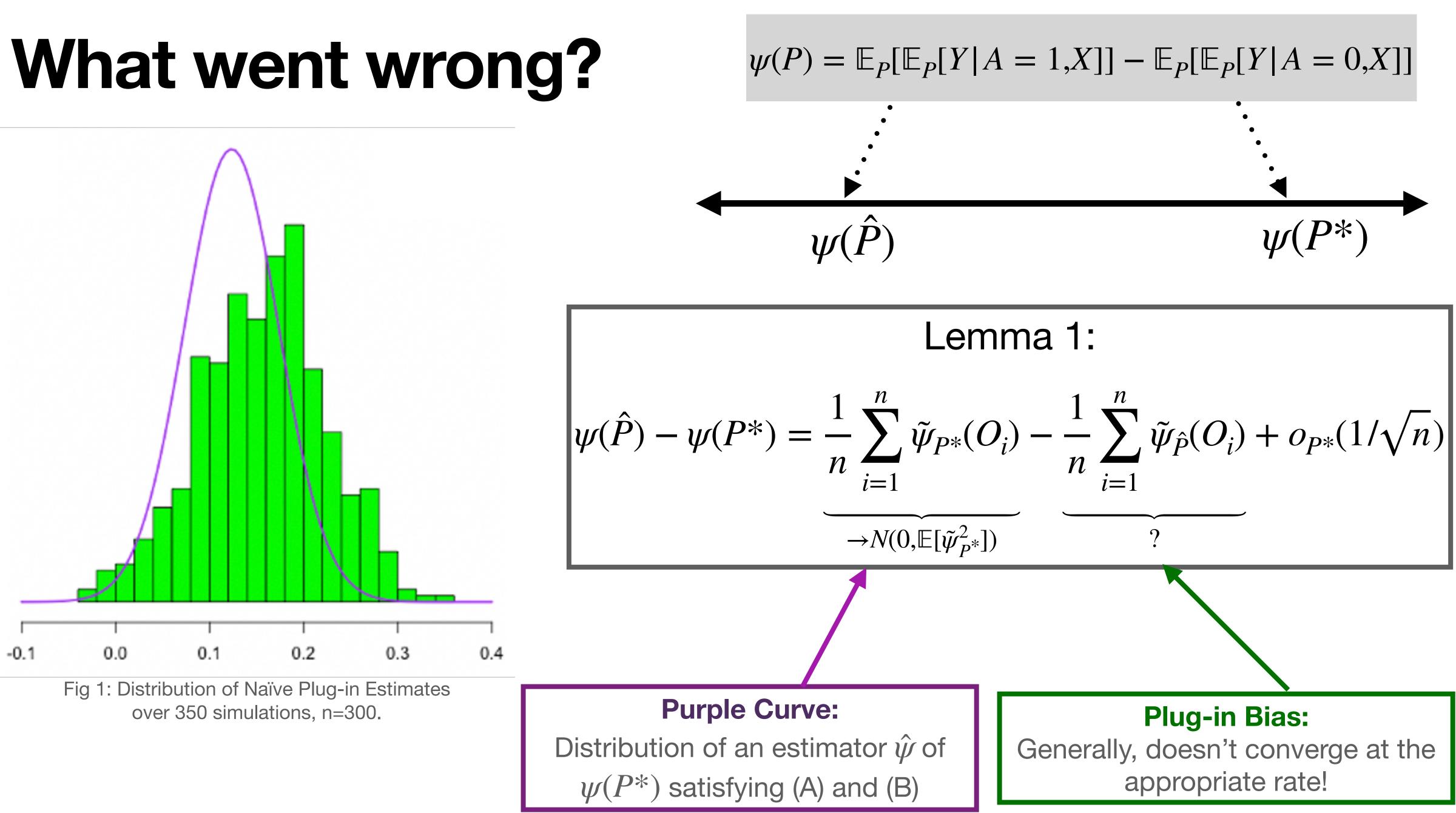
Naïve Plug-in Estimation

Estimated Distribution: $\hat{P} = (\hat{P}_X, \hat{P}_{A|X}, \hat{P}_{Y|A,X})$

 \hat{P}_{x} : marginal empirical distribution $\hat{P}_{A=1|X}$: estimated propensities $\hat{P}_{Y=1|A,X}$: conditional regression func.

> Target quantity of interest can be expressed as $\psi: M \to \mathbb{R}$





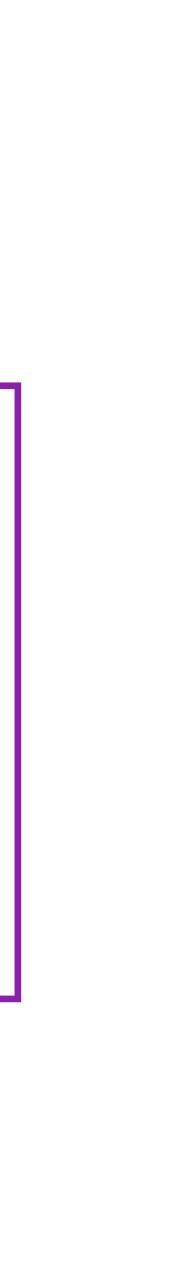
Outline

- 1. Naive Plug-in Estimation: Why does this fail?
 - Plug-in bias fails criteria (A), (B)
- 2. Existing Methods for Debiasing: TMLE
- 3. Our Method: KDPE!

"Good Estimator"?

- **A. Enables Uncertainty Quantification:** tractable limiting distribution via. CLT.
- **B.** Data-efficient and **consistent:** converges to truth faster with less data

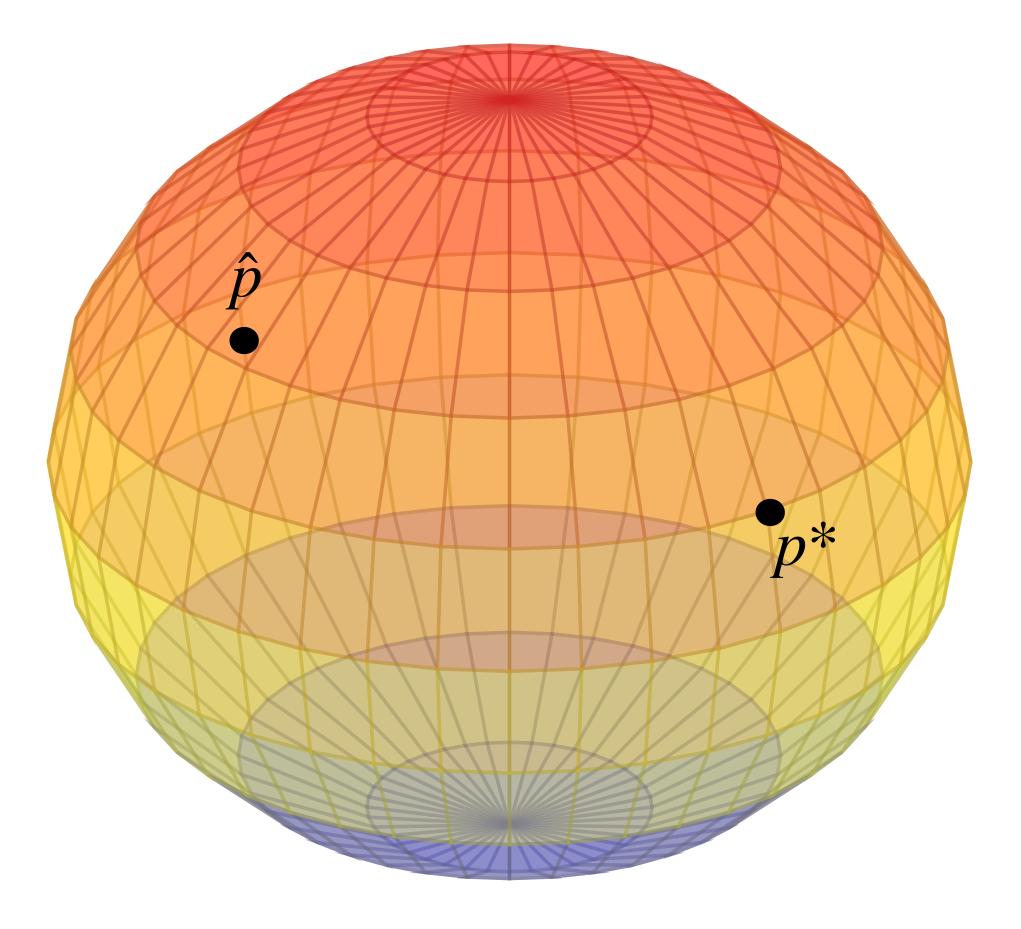
C. Retains simplicity of a plug-in approach



How do we find plug-in bias free $P \in M$ from \hat{P} ?

How do we move in M?

- 1. Scores: "directions" we can move at \hat{P}
- 2. **MLE:** Along the direction we choose, how much do we move?

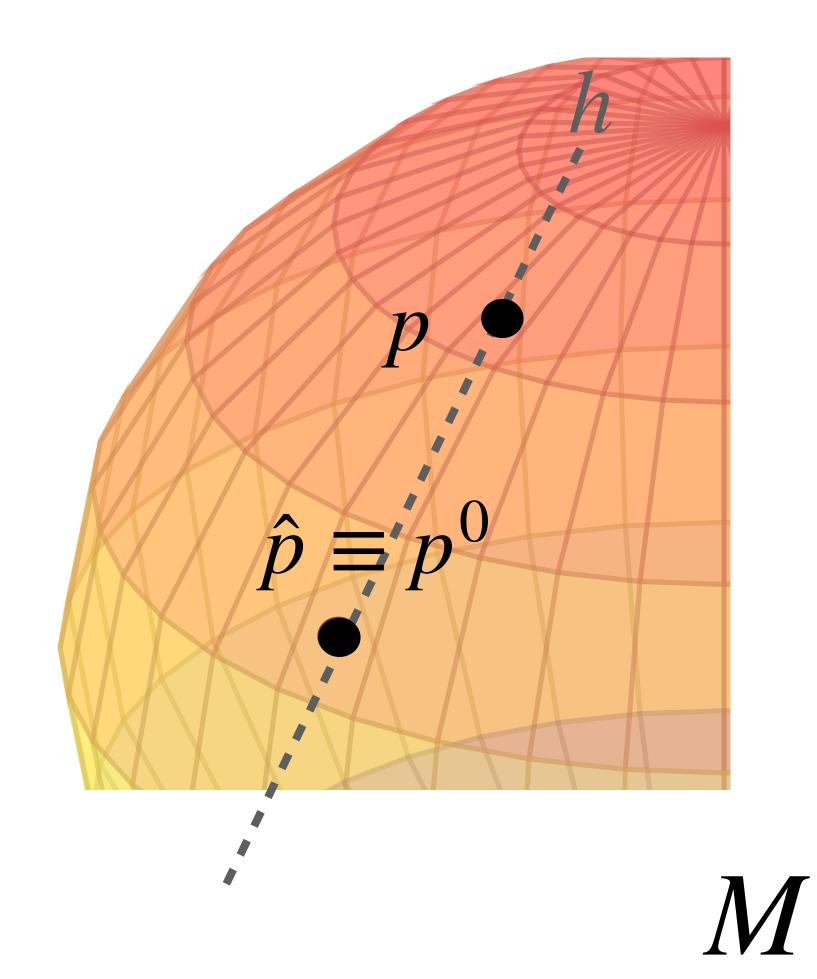


Set-up Tangent Spaces and Scores

Scores: One-Dimensional Sub-Models

$$p(\epsilon) = (1 - \epsilon)p^0 + \epsilon p = p^0(1 + \epsilon h)$$
where

$$h = \frac{p}{p^0} - 1$$
 is the "direction"

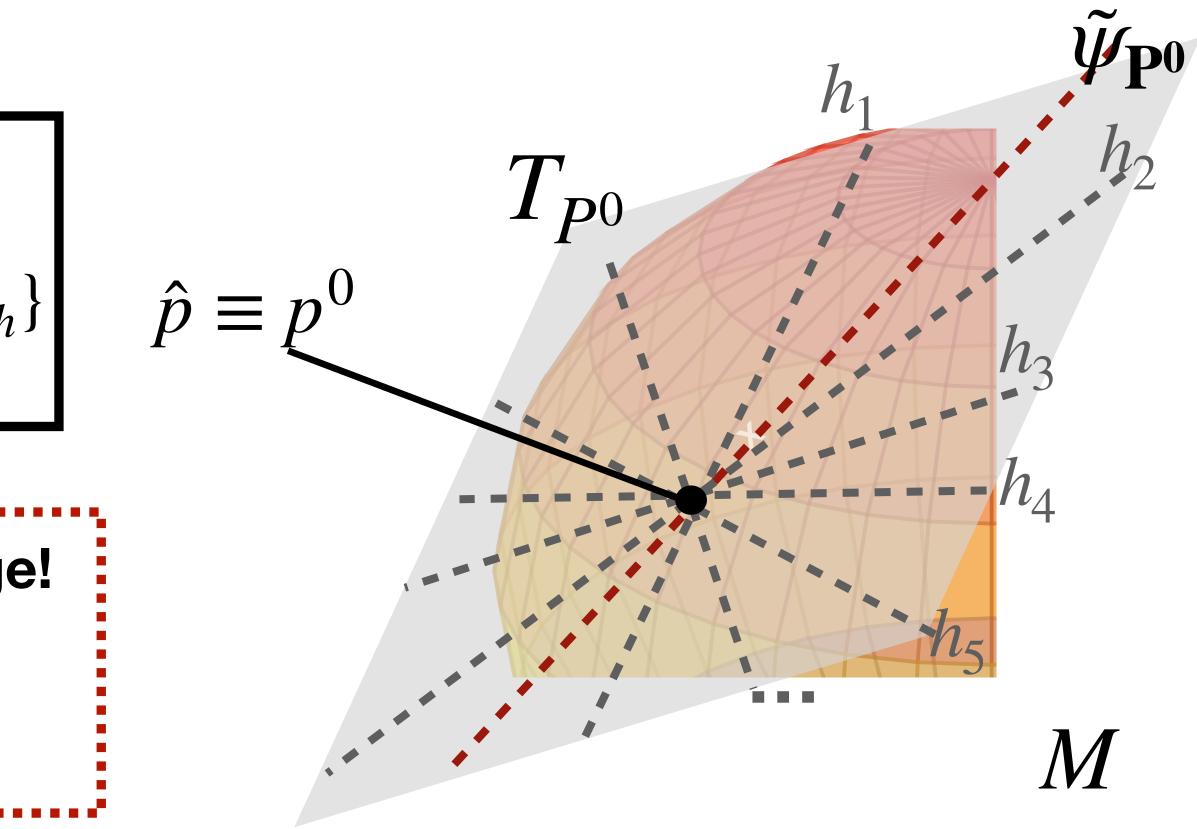


Set-up Tangent Spaces and Scores

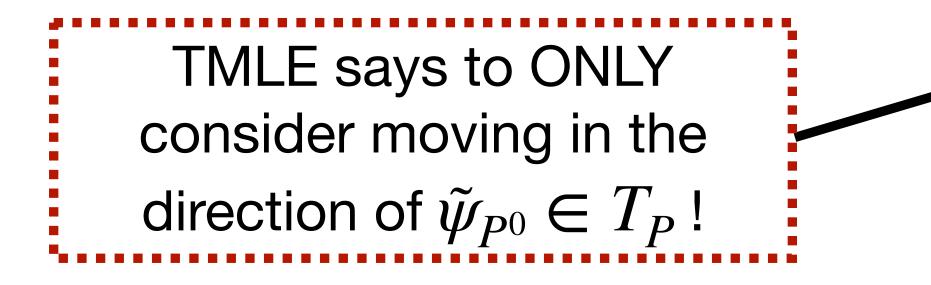
Tangent Space:

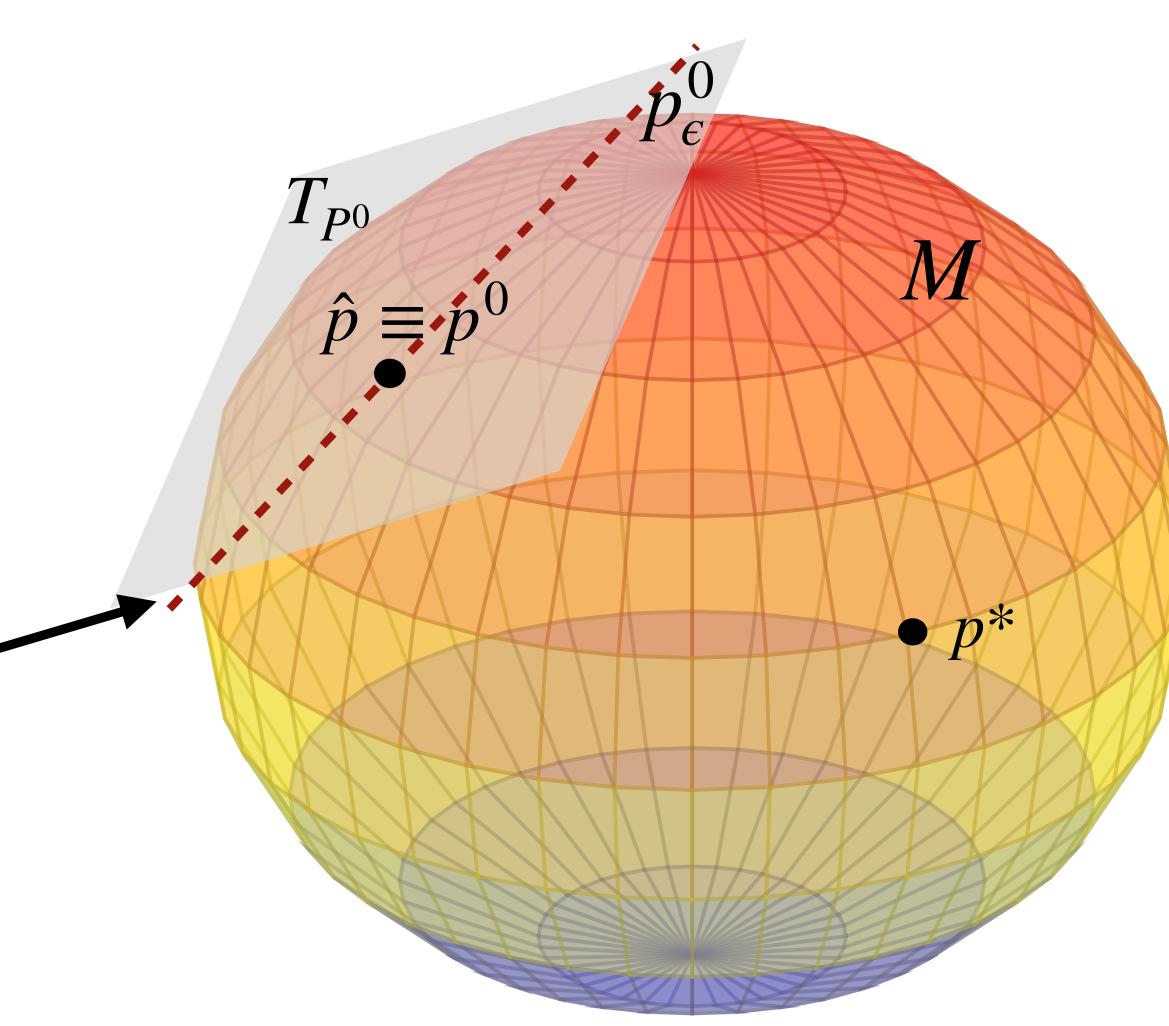
$$T_P = \{h : \exists e_h \ s \ t \ (1 + eh) \ p \in M \ \forall e \leq e_h \}$$
 $\tilde{\psi}_P \in T_P$ is the direction of maximal change

 $\tilde{\psi}_P = \arg \max_{\|h\|=1,h\in T_P} \nabla_{e=0} \psi([1 + eh] \ p))$



(1): Construct the IF-based model: $p_{\epsilon}^{0}(O) = (1 + \epsilon \tilde{\psi}_{P^{0}}(O)) \ p^{0}(O)$



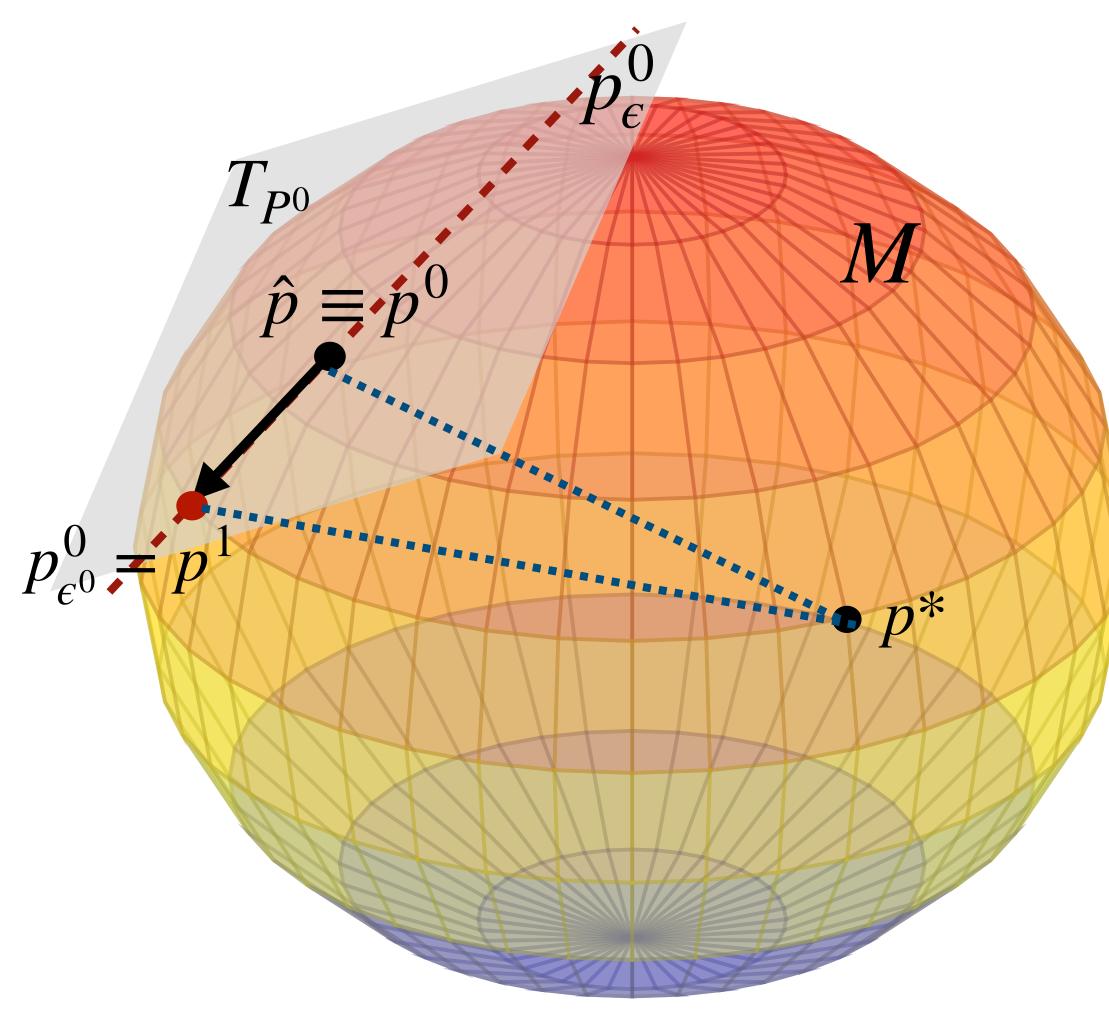


TMLE van der Laan et. al. (2006)

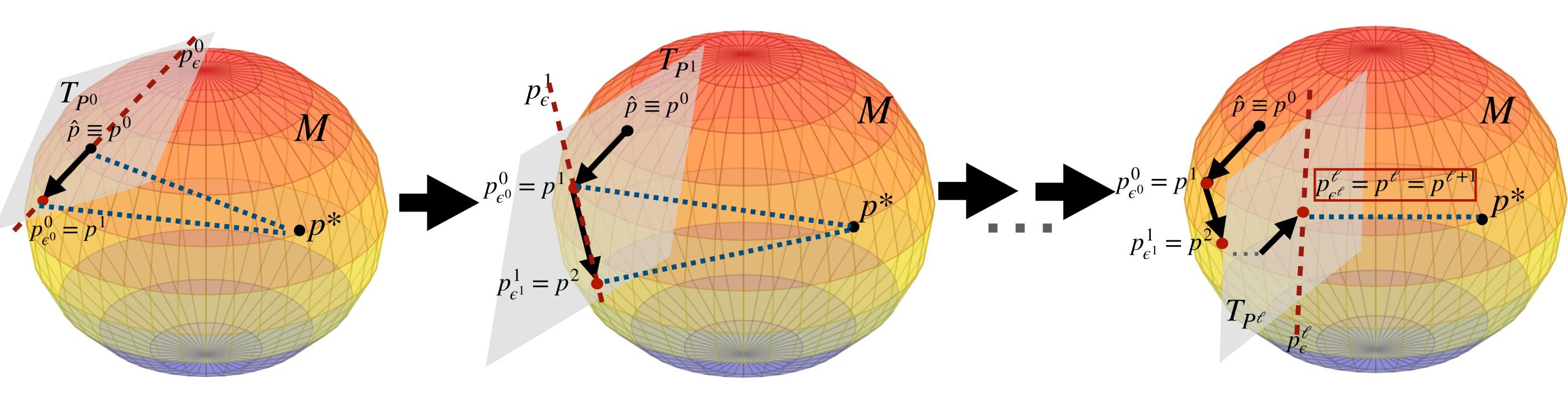
(1): Construct the IF-based sub-model: $p^0_{\epsilon}(O) = (1 + \epsilon \tilde{\psi}_{P^0}(O)) \ p^0(O)$

(2): Find ϵ^0 by MLE to get update!

$$\epsilon^{0} = \arg \max_{\epsilon} \sum_{i=1}^{n} \log p_{\epsilon}^{0}(O_{i})$$
$$p^{1} = p_{\epsilon^{0}}^{0} = (1 + \epsilon^{0} \tilde{\psi}_{P^{0}}) p^{0}$$



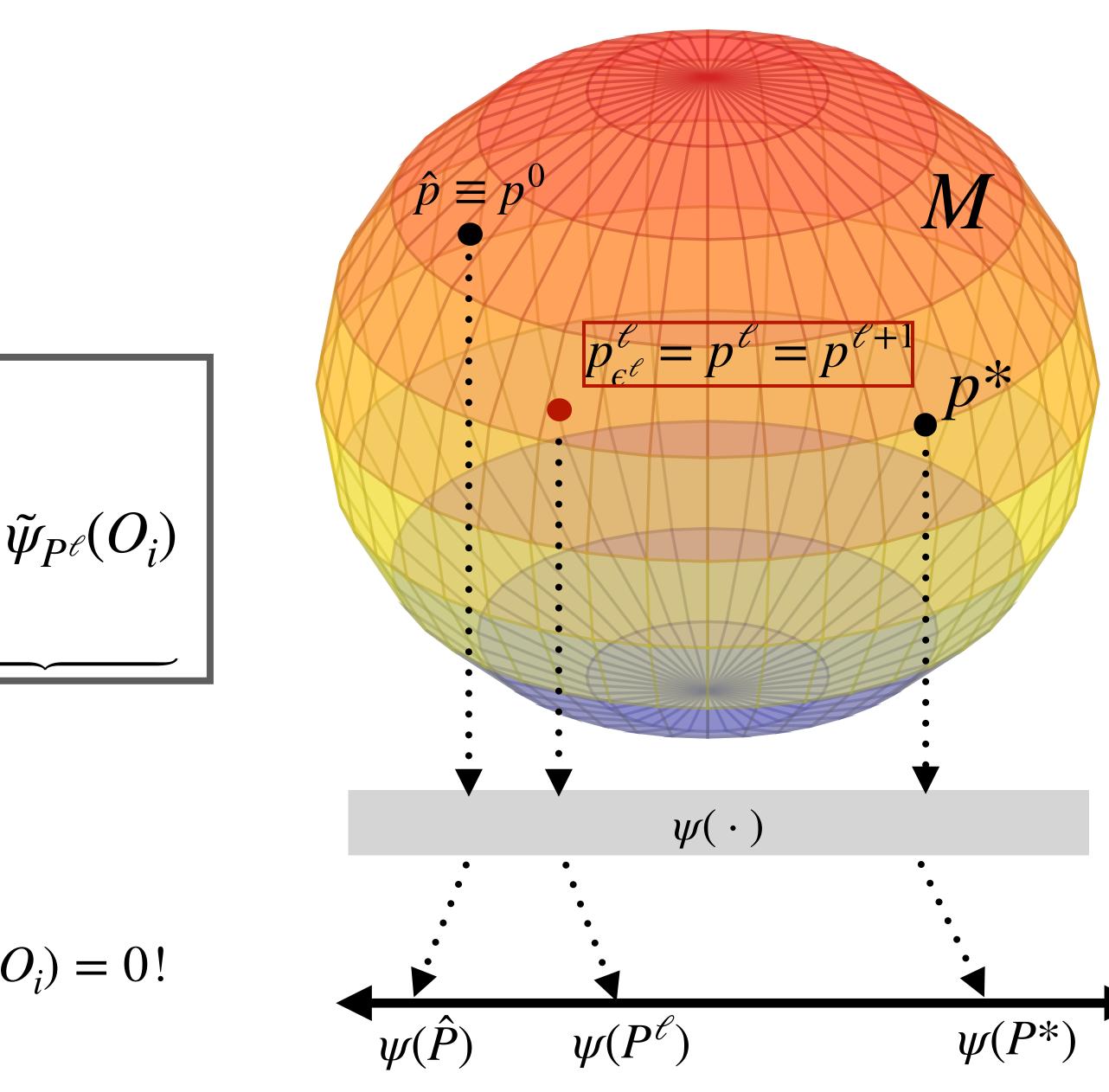
Keep iterating this process until $\epsilon = 0$!



Lemma 1:

$$\psi(P^{\ell}) - \psi(P^*) \approx \frac{1}{n} \sum_{i=1}^n \tilde{\psi}_{P^*}(O_i) - \frac{1}{n} \sum_{i=1}^n \tilde{\psi}_{P^*}(O_i)$$
By FOC for MLE problem and $\epsilon = 0$,

$$\nabla_{\epsilon=0} \sum_{i=1}^n \left[\log(1 + \epsilon \tilde{\psi}_{P^\ell})(O_i) \ p^{\ell}(O_i) \right] = \sum_{i=1}^n \tilde{\psi}_{P^\ell}(O_i)$$



Drawbacks of TMLE (and other IF-based methods)

- 1. To run TMLE, we need the influence function $\tilde{\psi}_P$ for each ψ !
 - Jordan et. al. (2022): "deriving the actual (IF) that yields bias adjustment may require significant analytical effort."
 - **Hines et. al.** (2021): "derivation of the IF often regarded as a 'dark art'...not given much attention in traditional statistics education... some steps appearing as if from nowhere."
 - Kennedy et. al. (2019): "many researchers find IF-based estimators to be opaque or overly technical, which makes their use less prevalent and their benefits less available"

Drawbacks of TMLE (and other IF-based methods)

- 1. Need the influence function $\tilde{\psi}_P$ for each quantity of interest ψ !
 - Jordan et. al. (2022), Hines et. al. (2021), Kennedy et. al. (2019)
- 2. Final plug-in P^{ℓ} built for ψ doesn't work for a different quantity of interest ψ' !

Outline

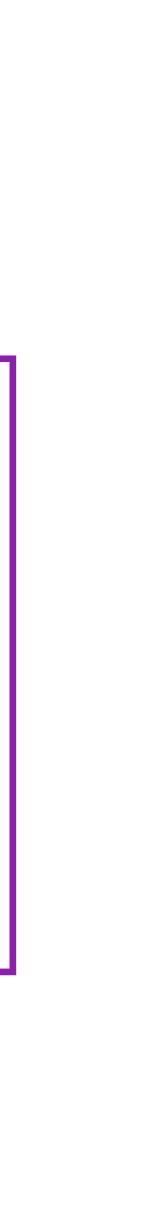
- 1. Naive Plug-in Estimation: Why does this fail?
 - Plug-in bias fails criteria (A), (B)
- 2. Existing Methods for Debiasing: TMLE
 - Fails criteria (C)
- 3. Our Method: KDPE!

"Good Estimator"?

A. Enables Uncertainty Quantification: tractable limiting distribution via. CLT.

B. Data-efficient: converges to truth faster with less data

C. Retains simplicity of a plug-in approach



Outline

- 1. Naive Plug-in Estimation: Why does this fail?
 - Plug-in bias fails criteria (A), (B)
- 2. Existing Methods for Debiasing: TMLE
 - Fails criteria (C)
- 3. Our Method: KDPE!

Can we find a general plug-in distribution P^{ℓ}

"Good Estimator"?

A. Enables Uncertainty Quantification: tractable limiting distribution via. CLT.

B. Data-efficient: converges to truth faster with less data

C. Retains simplicity of a plug-in approach

that removes plug-in bias for many estimands ψ ?

Kernel Debiased Plug-in Estimation

KDPE is a modified TMLE, with two major changes within in each iteration:

- 2. Solving MLE for $\epsilon \in \mathbb{R} \implies$ Solving MLE for $\alpha \in \mathbb{R}^n$

1. Only moving in the direction of $\tilde{\psi}_P \implies \mathbf{moving}$ in dense subset of T_P !

Reproducing Kernel Hilbert Spaces "Kernel" Debiased Plug-in Estimation

What is a Reproducing Kernel Hilbert Space?

Technical Definition:Kernel Function: $K(O, O') = \exp(-\|O - O'\|_2^2)$ RKHS H: set of functions that satisfy the following:1. $K(O, \cdot) \in H$ for any $O \in \mathcal{O}$ 2. $\forall f \in H, O \in \mathcal{O}, \langle f, K(O, \cdot) \rangle = f(O)$

Why use RKHS?

. Certain RKHS (i.e. those associated with RBF Kernels) are sufficiently rich spaces.

2. Enables computationally tractable optimization for MLE

KDPE

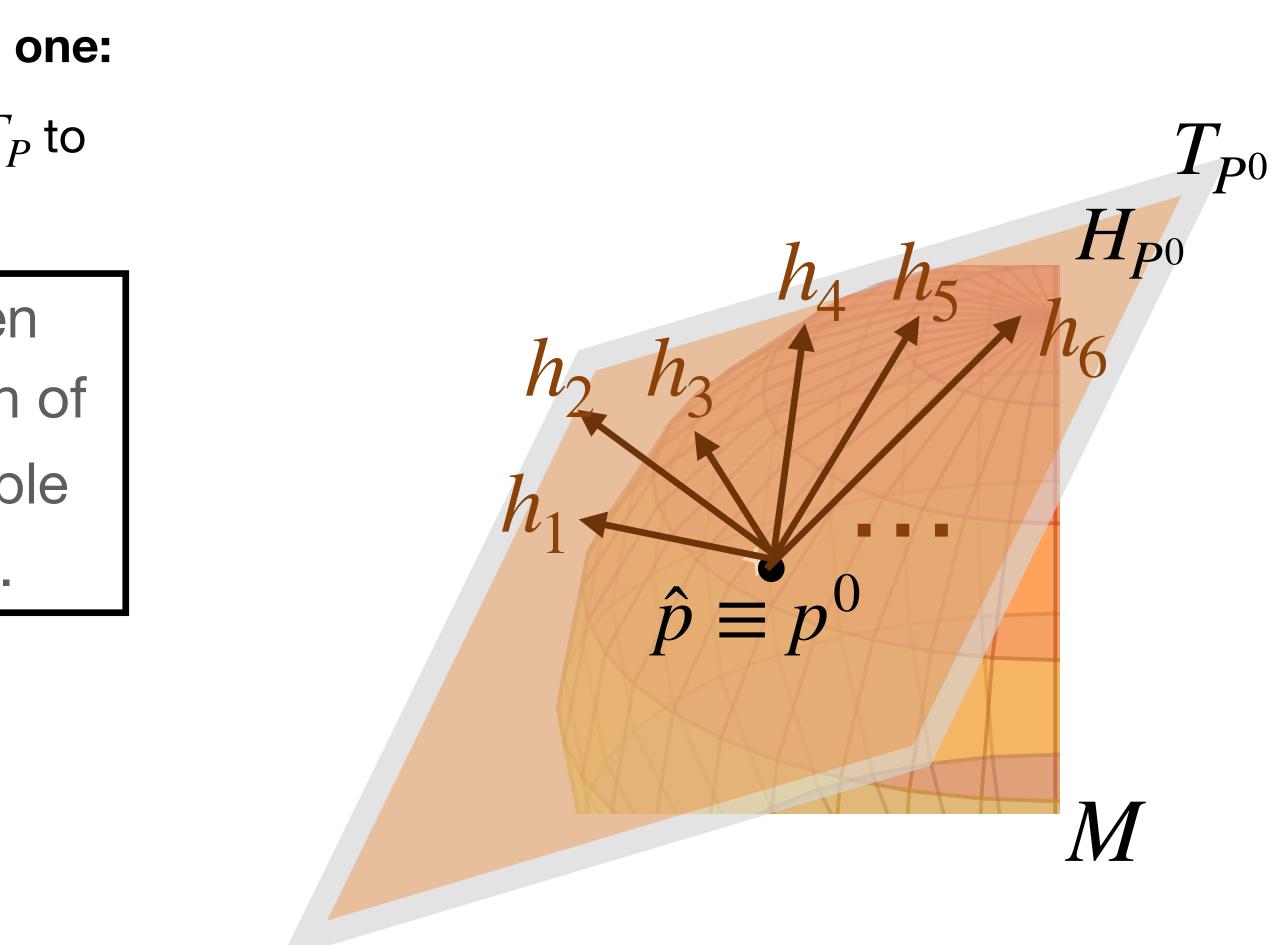
1. Use an RKHS-Based Sub-model, not IF-based one:

- Project universal RKHS H into tangent space T_P to get RKHS H_P

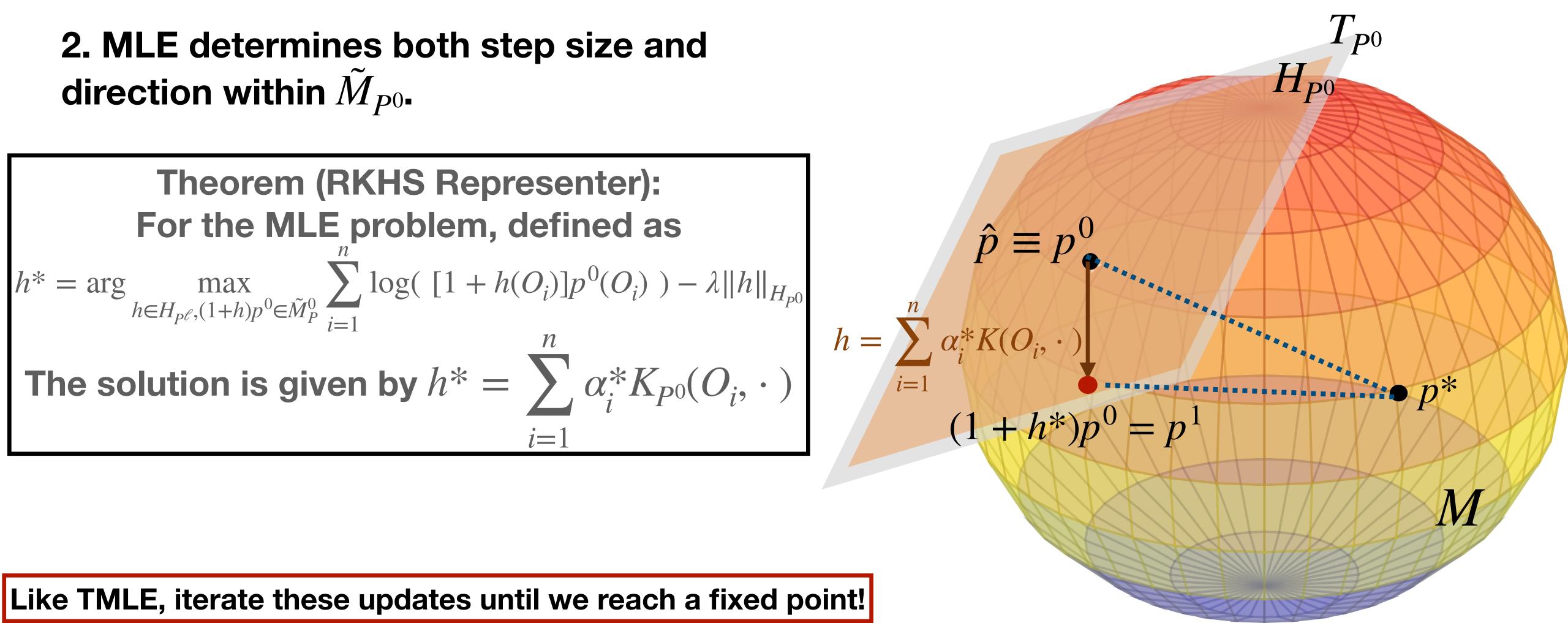
Lemma 1: By the fact that our chosen kernel *K* is *universal*, H_P , the projection of RKHS *H*, is **DENSE** in the set of feasible directions T_P and remains an RKHS.

- Construct RKHS-based model $ilde{M}_{P^0}$

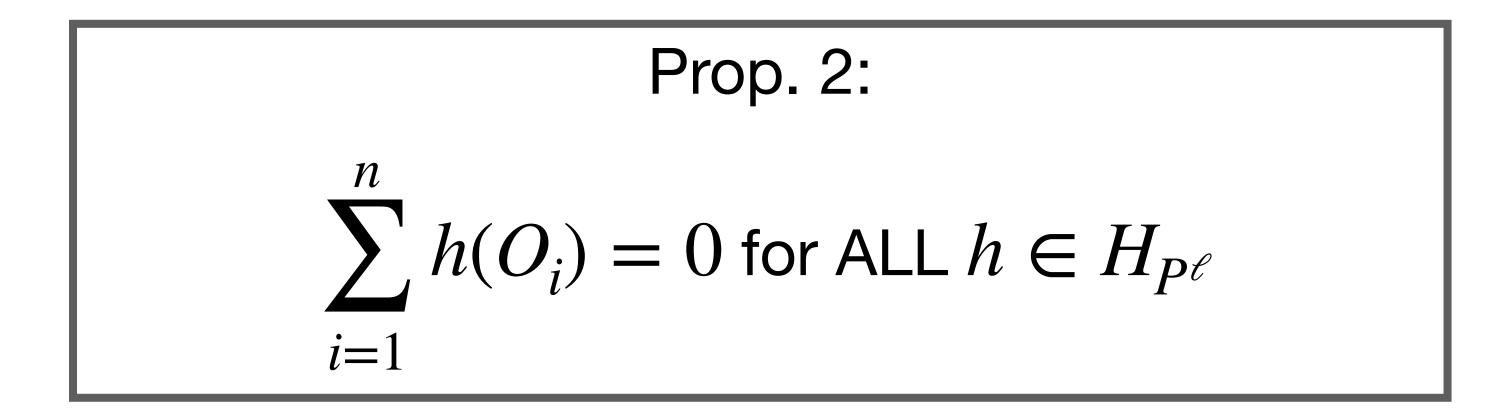
 $\tilde{M}_{P^0} = \{ (1+h)p^0 ; h \in H_{P^0} \} \cap M$



KDPE

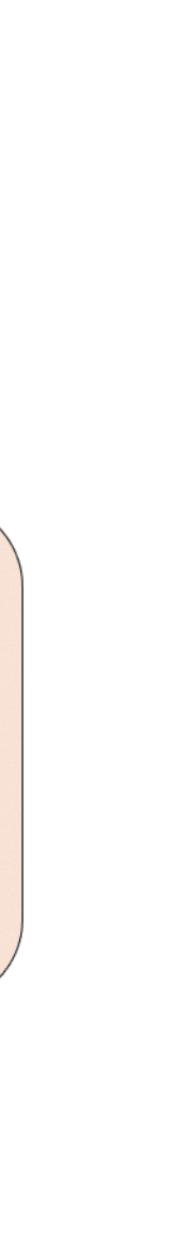


Theoretical Guarantees for KDPE



Key Takeaway

We are leveraging the firstorder conditions, and **NOT** to obtain some optimal solution / approximate the influence function in any way.



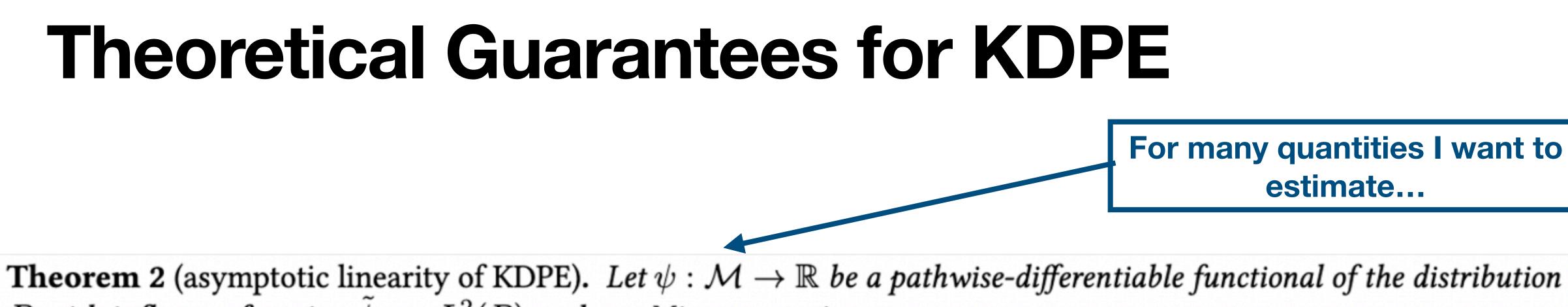
Theoretical Guarantees for KDPE

P with influence function $\psi_P \in L^2_0(P)$ and von Mises expansion:

$$\psi(\bar{P}) - \psi(P) = \int \tilde{\psi}_{\bar{P}} d(\bar{P} - Q) d(\bar{P})$$

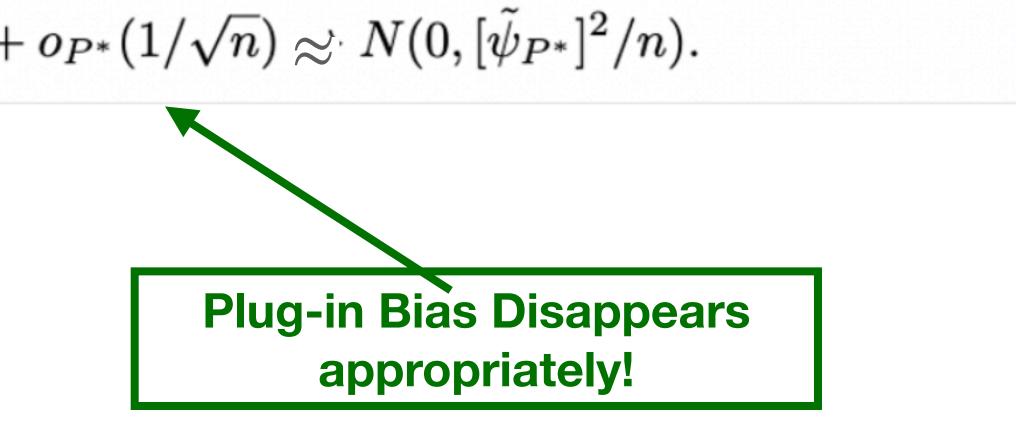
satisfies $\mathbb{P}_n \psi_{\widehat{P}} = o_{P^*}(1/\sqrt{n})$ and the KDPE estimator satisfies

$$\psi(\widehat{P}) - \psi(P^*) = \mathbb{P}_n \widetilde{\psi}_{P^*} + n^{-1} \sum_{i=1}^n \widetilde{\psi}_{P^*}(O_i)$$



 $P) + R_2(\bar{P}, P)$ for any $\bar{P}, P \in \mathcal{M}$,

which defines the second-order reminder term $R_2(\overline{P}, P)$. Then, under necessary regularity conditions, the plug-in bias



Outline

- 1. Naive Plug-in Estimation: Why does this fail?
 - **Plug-in bias fails criteria (A), (B)**
- 2. Existing Methods for Debiasing: TMLE
 - **Fails criteria (C)**
- 3. Our Method: KDPE!
 - Satisfies (A), (B), (C)

Can we find a general plug-in distribution P^ℓ that removes plug-in bias for many estimands ψ ? KDPE!

"Good Estimator"?

A. Enables Uncertainty Quantification: tractable limiting distribution via. CLT.

B. Data-efficient: converges to truth faster with less data

C. Retains simplicity of a plug-in approach

Simulation Studies

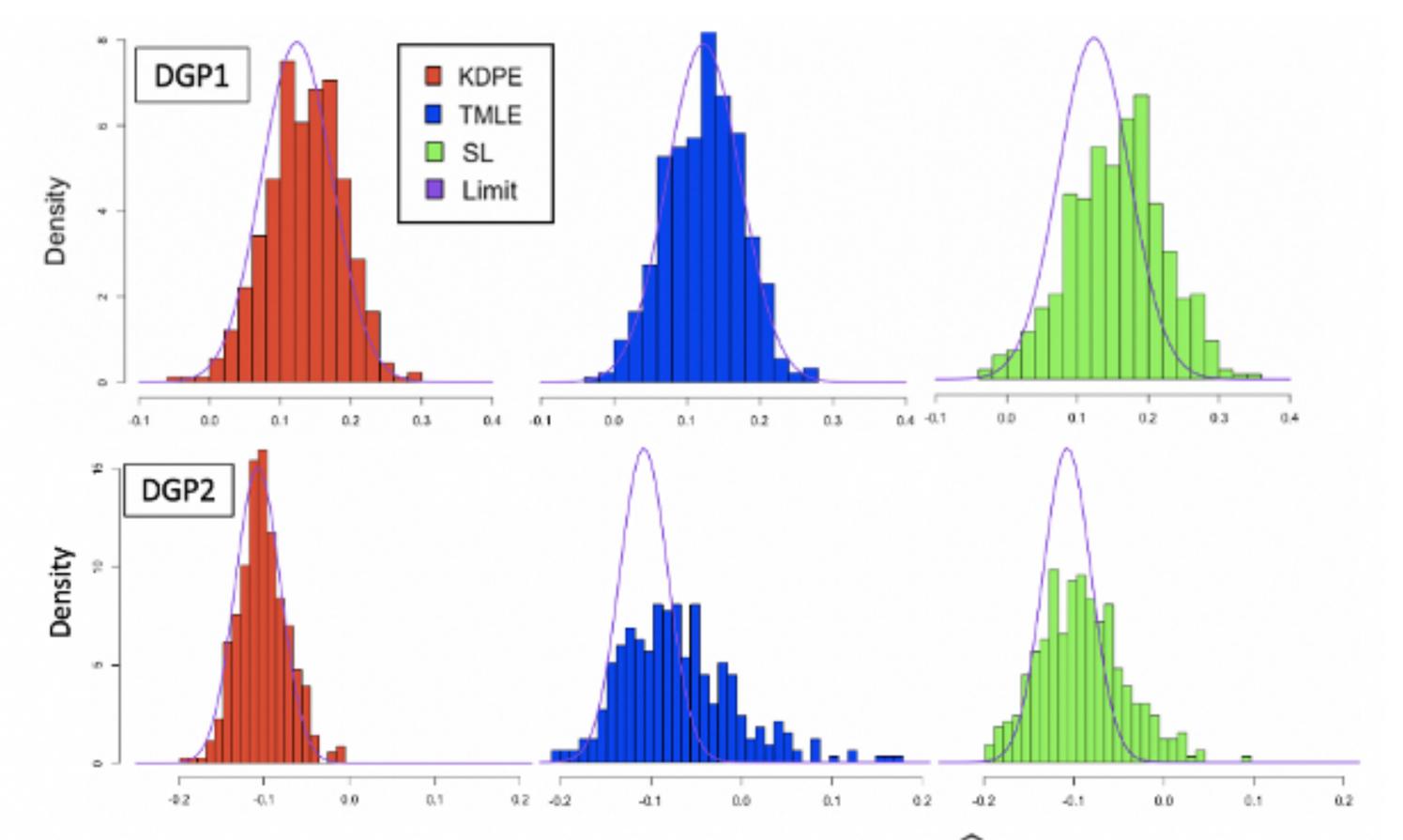
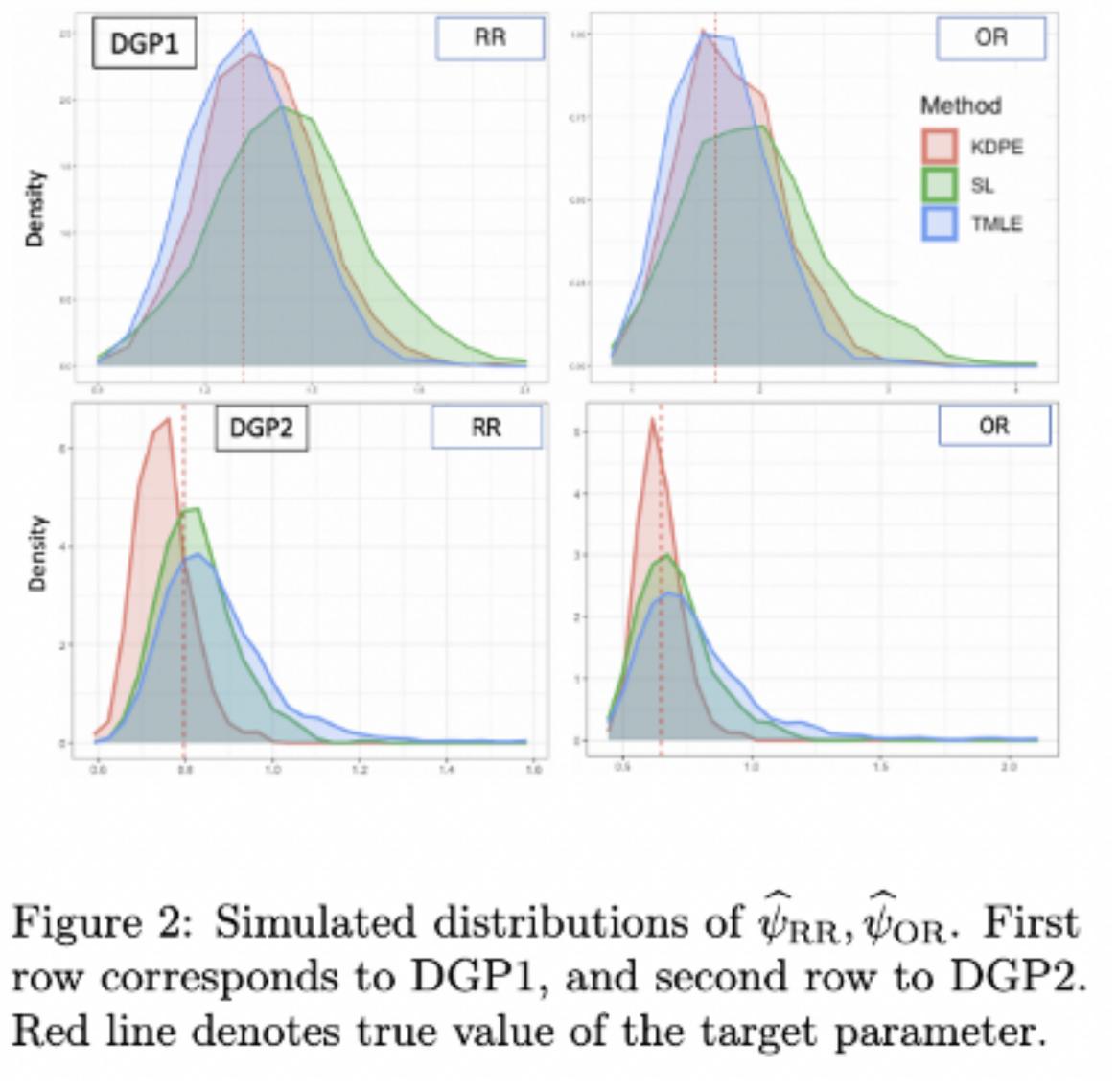


Figure 1: Simulated distributions of $\widehat{\psi}_{ATE}$ compared to their asymptotic distributions. TMLE distribution in the second row corresponds to LTMLE for DGP2.

Simulation Studies

	Method	ψ_{ATE}	$\psi_{\rm RR}$	ψ_{OR}
DGP1	SL	0.0803	0.2623	0.6796
	TMLE	0.0574	0.1723	0.4059
	KDPE	0.0592	0.1752	0.4303
DGP2	SL	0.0508	0.0925	0.1555
	LTMLE	0.0731	0.1481	0.2648
	KDPE	0.0295	0.0778	0.0827

Table 1: Root Mean Squared Error (RMSE) of KDPE, (L)TMLE, and SL for DGP1, DGP2



References

Targeted Maximum Likelihood Learning. Mark J. van der Laan and Daniel Rubin (2006).

Empirical gateaux derivatives for causal inference.

functions.

(2022)

- Michael I. Jordan, Yixin Wang, and Angela Zhou. (2022)
- Demystifying statistical learning based on efficient influence
- Hines, O., Dukes, O., Diaz-Ordaz, K., and Vanstee- landt, S.