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Does X cause Y?
Background

Say you care about two random variables, X and Y.
You know they are statistically dependent, but you don’t know why.

X Y

X⊥̸⊥ Y
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Does X cause Y?
Background

You know from experience that Y could not cause X.
But does X cause Y?

Or is there another explanation?

X Y

?
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Does X cause Y?
Background

Perhaps a third variable causes both instead.
Here, Z is a confounder for X and Y.

X Y

Z

?
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Does X cause Y?
Background

Or perhaps both are true.

X Y

Z

?
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Does X cause Y?
Background

And if X does cause Y, how strong is the effect?

X Y

Z

?
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Covariate adjustment for causal effect estimation
Background

• To obtain an unbiased estimate of the causal effect of X on Y, we need to adjust for
all confounders for {X, Y}.

• How do we select the variables to adjust for?
• Covariate selection is a central task in the design of observational studies [ ].
• The primary goal of covariate selection is to obtain a valid adjustment set for an

exposure-outcome pair that eliminates confounding bias [ ].
• Confounding bias distorts the observed relationship between the exposure and

outcome, leading to incorrect effect measures even under infinite data [ ].
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Why not adjust for everything?
Background

• A naive approach is to adjust for all measured variables.
• However, it is established that multiple variable types can induce bias when retained

for adjustment [ , ].
. Colliders induce selection bias [ – ].
. Mediators bias total effects by controlling for indirect effects [ ].
. Instruments can amplify existing bias or introduce new bias in some settings [ ].

• Further, unnecessary adjustment [ ] may increase the variance of causal effect
estimates or undermine model fitting due to the curse of dimensionality [ ].
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Causal discovery for automated covariate selection
Background

In this paper, we address the following question:

In the absence of prior knowledge, does there exist a polynomial-time algorithm that can
select covariates in a principled, automated, and causality-based manner with theoretical
guarantees on correctness?
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Non-causal association flows along open backdoor paths
Preliminaries

X Y

Z
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Valid adjustment under the backdoor criterion
Preliminaries
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Adjustment blocks backdoor paths
Preliminaries
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Assuming pretreatment oversimplifies the problem
Preliminaries

Most existing methods for automated covariate selection assume that inputs causally
precede the exposure [ – ].

This assumption requires prior knowledge and overly simplifies this task, so we avoid it.
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Triple DAGs: cause, effect, or neither?
Partitions of Z
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Generalizing to indirect active paths
Partitions of Z
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All possible path type combinations
Partitions of Z
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A taxonomy for arbitrary Z
Partitions of Z
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Reduction to the -node DAG
Partitions of Z
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Visual intuition
Local Discovery by Partitioning (LDP)
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Pseudocode
Local Discovery by Partitioning (LDP)
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Sufficient conditions for identifiability
Local Discovery by Partitioning (LDP)
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Guarantees on correctness
Local Discovery by Partitioning (LDP)
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Time complexity is quadratic in |Z|
Local Discovery by Partitioning (LDP)
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LDP accurately partitions the -node DAG
Empirical results

/



LDP accurately partitions more complex DAGs
Empirical results
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LDP accurately partitions more complex DAGs
Empirical results

The mildew benchmark [ ] from bnlearn [ ]. |Z| = 31 for exposure-outcome pair (mikro_1 → meldug_2).
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LDP enables less biased and more precise ATE estimates
Empirical results
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Even if partitions are wrong, adjustment sets are valid
Empirical results
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Even if partitions are wrong, adjustment sets are valid
Empirical results
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Next steps...
Empirical results

Applying LDP to:

. Fairness in organ transplantation.

. Covariate selection for trial emulation.

. Instrumental variable discovery for Mendelian randomization.
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Thank you! Any questions?

maasch@cs.cornell.edu
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