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Does X cause Y?
Ŵ Background

Say you care about two random variables, X and Y.
You know they are statistically dependent, but you don’t know why.

X Y

X⊥̸⊥ Y
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Does X cause Y?
Ŵ Background

You know from experience that Y could not cause X.
But does X cause Y?

Or is there another explanation?

X Y

?
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Does X cause Y?
Ŵ Background

Perhaps a third variable causes both instead.
Here, Z is a confounder for X and Y.

X Y

Z

?
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Does X cause Y?
Ŵ Background

Or perhaps both are true.

X Y

Z

?
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Does X cause Y?
Ŵ Background

And if X does cause Y, how strong is the effect?

X Y

Z

?
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Covariate adjustment for causal effect estimation
Ŵ Background

• To obtain an unbiased estimate of the causal effect of X on Y, we need to adjust for
all confounders for {X, Y}.

• How do we select the variables to adjust for?
• Covariate selection is a central task in the design of observational studies [Ŵ].
• The primary goal of covariate selection is to obtain a valid adjustment set for an

exposure-outcome pair that eliminates confounding bias [ŵ].
• Confounding bias distorts the observed relationship between the exposure and

outcome, leading to incorrect effect measures even under infinite data [Ŷ].
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Why not adjust for everything?
Ŵ Background

• A naive approach is to adjust for all measured variables.
• However, it is established that multiple variable types can induce bias when retained

for adjustment [ŷ, Ÿ].
Ŵ. Colliders induce selection bias [Ź–Ż].
ŵ. Mediators bias total effects by controlling for indirect effects [ż].
Ŷ. Instruments can amplify existing bias or introduce new bias in some settings [Ŵų].

• Further, unnecessary adjustment [Ÿ] may increase the variance of causal effect
estimates or undermine model fitting due to the curse of dimensionality [ŴŴ].
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Causal discovery for automated covariate selection
Ŵ Background

In this paper, we address the following question:

In the absence of prior knowledge, does there exist a polynomial-time algorithm that can
select covariates in a principled, automated, and causality-based manner with theoretical
guarantees on correctness?

Ŵŵ/ŷŷ



Table of Contents
ŵ Preliminaries

▶ Background

▶ Preliminaries

▶ Partitions of Z

▶ Local Discovery by Partitioning (LDP)

▶ Empirical results

▶ References

ŴŶ/ŷŷ



Non-causal association flows along open backdoor paths
ŵ Preliminaries

X Y

Z

Ŵŷ/ŷŷ



Valid adjustment under the backdoor criterion
ŵ Preliminaries
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Adjustment blocks backdoor paths
ŵ Preliminaries
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Assuming pretreatment oversimplifies the problem
ŵ Preliminaries

Most existing methods for automated covariate selection assume that inputs causally
precede the exposure [Ŵŵ–ŴŹ].

This assumption requires prior knowledge and overly simplifies this task, so we avoid it.
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Triple DAGs: cause, effect, or neither?
Ŷ Partitions of Z
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Generalizing to indirect active paths
Ŷ Partitions of Z

ŵų/ŷŷ



All possible path type combinations
Ŷ Partitions of Z
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A taxonomy for arbitrary Z
Ŷ Partitions of Z
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Reduction to the Ŵų-node DAG
Ŷ Partitions of Z
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Visual intuition
ŷ Local Discovery by Partitioning (LDP)
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Pseudocode
ŷ Local Discovery by Partitioning (LDP)
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Sufficient conditions for identifiability
ŷ Local Discovery by Partitioning (LDP)
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Guarantees on correctness
ŷ Local Discovery by Partitioning (LDP)
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Time complexity is quadratic in |Z|
ŷ Local Discovery by Partitioning (LDP)
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LDP accurately partitions the Ŵų-node DAG
Ÿ Empirical results
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LDP accurately partitions more complex DAGs
Ÿ Empirical results
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LDP accurately partitions more complex DAGs
Ÿ Empirical results

The mildew benchmark [Ŵź] from bnlearn [ŴŻ]. |Z| = 31 for exposure-outcome pair (mikro_1 → meldug_2).
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LDP enables less biased and more precise ATE estimates
Ÿ Empirical results
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Even if partitions are wrong, adjustment sets are valid
Ÿ Empirical results
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Even if partitions are wrong, adjustment sets are valid
Ÿ Empirical results
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Next steps...
Ÿ Empirical results

Applying LDP to:

Ŵ. Fairness in organ transplantation.
ŵ. Covariate selection for trial emulation.
Ŷ. Instrumental variable discovery for Mendelian randomization.
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Thank you! Any questions?

maasch@cs.cornell.edu
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