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ABSTRACT

* Constraint-based causal discovery for covariate selection: Given an exposure-outcome pair
{X,Y} and a variable set Z of unknown causal structure, the Local Discovery by Partitioning
(LDP) algorithm partitions Z into subsets defined by their relation to {X,Y'}.

* Differentiating confounders from other variables: We enumerate eight exhaustive and mutually
exclusive partitions of arbitrary Z and leverage this taxonomy for discovery.

* No pretreatment assumption: LDP does not assume that inputs causally precede the exposure,
unlike most methods for automated covariate selection.

* Asymptotic theoretical guarantees: LDP returns a valid adjustment set for any Z under sufficient
graphical conditions. Partition labels are asymptotically correct under stronger conditions.

e Polynomial runtimes: Total independence tests is worst-case quadratic in |Z|, significantly out-
performing constraint-based baselines in experiments.

e Less biased effect estimation: Adjustment sets from LDP yield less biased and more precise
average treatment effect (ATE) estimates than baselines.
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Does X cause Y?
1 Background

Say you care about two random variables, X and Y.
You know they are statistically dependent, but you don’t know why.
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Does X cause Y?
1 Background

You know from experience that Y could not cause X.
But does X cause Y?
Or is there another explanation?
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Does X cause Y?
1 Background

Perhaps a third variable causes both instead.
Here, Z is a confounder for X and Y.
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Does X cause Y?
1 Background

Or perhaps both are true.

N
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Does X cause Y?
1 Background

And if X does cause Y, how strong is the effect?
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Covariate adjustment for causal effect estimation

1 Background

To obtain an unbiased estimate of the causal effect of X on Y, we need to adjust for
all confounders for {X, Y}.

How do we select the variables to adjust for?
Covariate selection is a central task in the design of observational studies [1].

The primary goal of covariate selection is to obtain a valid adjustment set for an
exposure-outcome pair that eliminates confounding bias [2].

Confounding bias distorts the observed relationship between the exposure and
outcome, leading to incorrect effect measures even under infinite data [3].



Why not adjust for everything?

1 Background

e A naive approach is to adjust for all measured variables.

e However, it is established that multiple variable types can induce bias when retained
for adjustment [4, 5].

1. Colliders induce selection bias [6-8].
2. Mediators bias total effects by controlling for indirect effects [9].
3. Instruments can amplify existing bias or introduce new bias in some settings [10].
e Further, unnecessary adjustment [5] may increase the variance of causal effect
estimates or undermine model fitting due to the curse of dimensionality [11].
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Causal discovery for automated covariate selection

1 Background

In this paper, we address the following question:

In the absence of prior knowledge, does there exist a polynomial-time algorithm that can
select covariates in a principled, automated, and causality-based manner with theoretical

guarantees on correctness?
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Non-causal association flows along open backdoor paths

2 Preliminaries

Definition 2.3 (Backdoor path, Pearl 2009). Any
non-causal path between exposure X and outcome Y
with an edge pointing into X (--- — X).
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Valid adjustment under the backdoor criterion

2 Preliminaries

Definition 2.4 (Valid adjustment under the backdoor
criterion, Peters et al. 2017). Let A xy be an adjust-
ment set for {X,Y} that does not contain {X,Y}.
A xy is valid if

1. Axy contains no descendants of X and
2. A xy blocks all backdoor paths from X to Y.
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Adjustment blocks backdoor paths

2 Preliminaries
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Figure A.1: Valid adjustment sets. Here, the effect of exposure X on outcome Y is mediated by Zz. Let
Z, = {2},2%,Z},Zt}. (A) The conditional distribution p(Y|z) fails to isolate the causal association between
X and Y due to the open backdoor paths through Z;, pictured as red arrows. (B) We can isolate the causal
association between X and Y by intervening on X such that edges Z — X and Z} — X are removed. This
blocks the non-causal association flowing through these backdoor paths. (C) We can identify the interventional
distribution p(Y'|do(z)) via a statistical quantity by conditioning on valid adjustment set {Z}, Z?} (highlighted
in red), which also blocks the flow of non-causal association. (D) Valid adjustment sets are often non-unique.

An alternative valid adjustment set for this structure would be {Z}, Z}}, and still others exist. Figure adapted
from Neal (2020).
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Assuming pretreatment oversimplifies the problem

2 Preliminaries

Most existing methods for automated covariate selection assume that inputs causally
precede the exposure [12-16].

Z7

Figure A.2: Pretreatment variables (red) versus post-treatment variables (green). Z; (confounders), Z4, and Zs
(instruments) are pretreatment variables, which causally precede exposure X. Z, (colliders), Z3 (mediators),
Zg, and Z7 are post-treatment variables, with X as their causal ancestor. Zg is neither pre- nor post-treatment,
as it is causally unrelated to X.

This assumption requires prior knowledge and overly simplifies this task, so we avoid it.
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Triple DAGs: cause, effect, or neither?
3 Partitions of Z

(Z1) ( Z, [ Z3 ) (24)
(x )---- Y db C{( Y O Y
N 2 _ N 2/ -
Case 1: Z is a confounder. Case 2: Z is a collider. Case 3: Z is a mediator. Case 4: Z causes outcome.
Y ™\ N T
[ 25 ) | Zs | Z7 ) Zg
) ~
(X f---- Y X F---- \\)_{/%”” Y ) X F----
Case 5: Z causes exposure. | Case 6: Outcome causes Z. | Case 7: Exposure causes Z. Case 8: Z is isolated.

Table A.1: All potential acyclic triple subgraphs that can be induced by X, Y, and a single Z when paths are
restricted to a length of 1. The dashed arrow from exposure X to outcome Y indicates that the strength of this
relation is unknown. While the effect of X on Y might be null, it is known that X ). ¥ and that Y does not cause
X. The partition taxonomy proposed in this work (Table 1) generalizes these cases to more complex structures.
In the more complex setting, edges represent both direct adjacencies and indirect active paths. Absence of a
directed edge therefore indicates either an inactive path or no path at all.
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Generalizing to indirect active paths
3 Partitions of Z

TyPE AcCTIVE PATH RELATIVE TO X ACTIVE PATH RELATIVE TO Y

1 None (or none that do not pass through Y). None (or none that do not pass through X).

2 Z — -+ — X path(s) and no other types. Z — -+ =Y path(s) not passing through X and no other types.
3 X — -+ — Z path(s) not passing through Y and no other types. ¥ — --- — Z path(s) and no other types.

4 Z 4+ ...Z'---— X path(s) and no other types. Z 4+ ...2"--- =Y path(s) and no other types.

5 Type 2 path(s) and Type 4 path(s). Type 2 path(s) and Type 4 path(s).

6 Type 3 path(s) and Type 4 path(s). Type 3 path(s) and Type 4 path(s).

Table D.1: Exhaustive enumeration of the types of active paths that can lie between any given Z and {X,Y}.
In confounded paths, Z’' denotes an additional variable in Z that may or may not belong to the same partition
as Z. Note that Type 1 and Type 2 paths cannot coincide for a single Z, as this would induce a cycle.
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All possible path type combinations

3 Partitions of Z

RELATIVE TO X

Typel TypE2 TyPE3 TyPE4 TyYPES5 TYPE 6

| Tyep1 | Zs Zs Z: Zs Zs Zr
= | TYPE 2 Z4 Zl Z3 Z1 Z1 Z3
8| TYPE 3 Zg 0 Z, Z, ¢ Z;
E TYPE 4 Z4 Zl Zz ZZEM3 Z1 Z2
é TYPE 5 Z, Zy Z3 Z, ZleBS Zs
~ | TYPE 6 Zﬁ @ Zz Z2 @ Z2

Table D.2: Combinations of active path types relative to X and Y. Cells contain partitions that can participate
in the given combination of active path types. The empty set () indicates that this combination of active path
types is forbidden under the acyclicity constraint. A subscript of M3 indicates that this variable is an M-collider,
while a subscript of B; denotes a butterfly-type confounder (Figure A.3).
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A taxonomy for arbitrary Z
3 Partitions of Z

Theorem 1. Any Z can be partitioned into eight mutually exclusive subsets (of cardinality greater
than or equal to zero) defined solely by their relation to exposure X and outcome Y. Thus, each
7 € Z uniquely belongs to a single partition defined below.

EXHAUSTIVE AND MUTUALLY EXCLUSIVE PARTITIONS OF ARBITRARY Z

Z, |Confounders: Non-descendants of X that lie on an active backdoor path between X and Y.

Zy | Colliders: Non-ancestors of { X, Y’} with at least one active path to X not mediated by ¥ and
at least one active path to Y not mediated by X.

Z3 |Mediators: Descendants of X that are ancestors of Y.

Z, |Non-descendants of Y that are marginally dependent on Y but marginally independent of X .

Zs |Instruments: Non-descendants of X whose causal effect on Y is fully mediated by X, and
that share no confounders with Y.

Zg Descendants of Y where all active paths shared with X are mediated by Y.

Z; Descendants of X where all active paths shared with Y are mediated by X.

Zg | All nodes that share no active paths with X nor Y.

22/44



Reduction to the 10-node DAG

3 Partitions of Z

Figure 1: The partitions of Z (Table 1) reduce to a 10-
node DAG surrounding {X, Y} where nodes represent
partition sets, arrows signify both direct adjacencies
and indirect active paths (one or more), and inter-
covariate paths are abstracted away. The dashed edge
between X and Y indicates that the strength of this
relation is unknown, and may be null. Conditioning
on Z; in red blocks all backdoor paths for {X,Y}.
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Visual intuition
4 Local Discovery by Partitioning (LDP)

Zs Z Zy Zs Zy Z4 Zs (
@) & @ & O/
X)---AY --(Y ---%
{ Y Z
Zr Zs Zg Z7 Zy Zg Z7 5
« Zg «
Zs Zs
Step 0: Input {X,Y,Z}. Step 1: Identify Zs. Step 2:
P e =
(s 7y ( Zs Z, (Za) Zs
o 7 »
X}———f Y Xr---AY
o | ®
Z7 Zy Zg Z7 Z, Ze Z7
Zs Zs
Step 4: Identify some . Step 5: Identify Zy.. Step 6: Resolve Step 7: Resolve Z,, Zs.

Table D.3: Schematic of Algorithm 1. The exposure-outcome pair {X, Y} serves as a nucleus around which LDP
assembles a partial causal graph. Each step reveals additional information about the partitions of Z. Nodes that
are fully colored are fully discovered by Algorithm 1. Partial coloring denotes partial knowledge, and no coloring
denotes no knowledge.



Pseudocode
4 Local Discovery by Partitioning (LDP)

> STEP 5: TEST FOR Znmix
14: for all Z € Z' do
Algorithm 1 Local Discovery by Partitioning (LDP) 15: if Y Y ZandY 1L Z|XUZ'\ Z then
16: Z €Zi235 € Znix
17: 2/« Z'\ Zane

input {X,Y?},Z, independence test of choice.
output Partitions of Z:

e Z;: Confounders for {X,Y}. > STEP 6: SPLIT Znix BETWEEN Z1 5, Z7, Zposr
® Z,: Non-descendants of Y s.t. Y L ZyAX 1L Z,. 18: Zonx + Zvix U Zs 7
e Zs: Instrumental variables. 19: if |Zyux| > 0 then
e Z7: Descendants of X where Y 1l Z7 | X. 20: forall Z € Z' do
e Zs: Variables with no active paths to {X,Y}. 21: if 3 Zyx: Zaix L Z and Zyix U Z| X then
® Zposy: Post-treatment subset {Z3, Zs, Zg}. 22: Z € Z1, Znix € Zus ¢ Znvix
1: Copy Z' + Z ;Z els; ZscZ
H : Z € €
# iog"?lnlxﬂzle %;::l: FOR Zi; 25:  for all ZMi € Z‘;uo;i‘ do
sp 1: TEST F s X i -
3 if X1 ZandY L Z then o W3 Fus dl Zyx then
& Z€Zs,Z«Z\Z 2% else
> STEP 2: TEST FOR Zg . -
5. if X A Z and X JL Z|Y then 2: Dt € Zas € Zoomr
6: Z€Zy, T +Z'\Z > STEP 7: FINALIZE Z; AND Zs
> STEP 3: TEST FOR Zs 7 30: if |Z15| > 0 and |Z1] > 0 then
7. ifYY ZandY 1 Z|X then 31: forall Z,5 € Z15 do
8: Z €Zsan, T+ Z'\Z 32: if 321 €Zy: Zys U Z) then
> STEP 4: TEST FOR Zpost gi elsZe])s €Z:
9: if |Z4] > 0 then 35. Ths € Zs
10: forall Z € Z’' do b i
11: if 3Z4: ZW Zyor Z 1L Zy|X UY then 36: {not identifiable} « 2’

12: Z € Z2,36 € Zpost

13: Z'  Z'\ Zpos, 37: return Partitions of Z and {not identifiable}.
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Sufficient conditions for identifiability

4 Local Discovery by Partitioning (LDP)

Sufficient Conditions for Partition Accuracy
Given an independence oracle, we claim the following
sufficient (but not necessary) conditions for asymptot-
ically correct partitioning:

C1 The absence of inter-partition active paths that
are not fully mediated by {X,Y} (Definition 3.2).
The existence of at least one Z,. Given Condition
C1, all Z, (if any exist) will be marginally depen-
dent on such a Z; and will be identifiable by LDP.
This in turn guarantees that all backdoor paths
will be blocked by the conditioning set in Step 5
of Algorithm 1, which is used to discover Zs. This
condition is testable at line 9 of Algorithm 1.
Every true Z; forms a v-structure at X with at
least one other variable Z € Z (Z--+ — X «
-+ Zy)such that Z 1L Zy AZ )L Zy|X. By defini-
tion, variable Z can be either in Zs or Z;. Given
C1, Zs shares no active paths with Z; and thus all
of Z, is marginally independent of Zs. If |Z5| = 0,
the existence of at least two non-overlapping back-
door paths in Gxyz can satisfy this condition.
C4 Causal sufficiency in Gxyz.

C

N

C

99
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Guarantees on correctness
4 Local Discovery by Partitioning (LDP)

Theorem 2 (Correctness of LDP). Given {X,Y, Z}, an independence oracle, and Conditions CI-
C4, LDP is guaranteed to output a correct partition of Z that represents the local subgraph sur-
rounding {X,Y'}, where each Z € Z is defined solely by its relation to { X, Y }.

Theorem 3 (LDP returns valid adjustment sets). Given {X,Y, Z}, an independence oracle, and Con-
ditions C2-C4, LDP is guaranteed to return a valid adjustment set.
Definition 4 (Valid adjustment under the backdoor criterion, [2]). Let A xy be an adjustment set for

{X,Y} that does not contain {X,Y}. A xy is valid if 1) A xy contains no descendants of X and 2)
A xy blocks all backdoor paths from X to Y.
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Time complexity is quadratic in |Z|
4 Local Discovery by Partitioning (LDP)

2000

15001

10001

Tests performed

Mean runtime (seconds)

Cardinality of Z

Figure 2: Total tests performed per Z under an in-
dependence oracle (top) and mean runtime over 100
replicates (bottom) as the cardinality of Z increases,
with 95% confidence intervals in shaded regions. Each
DAG resembles Figure 1 with equal cardinality per
partition ([1,10]).
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LDP accurately partitions the 10-node DAG

5 Empirical results

X causes Y
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Bemoull | Quadratic
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X does not cause Y
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LDP accurately partitions more complex DAGs

5 Empirical results

GRAPH WITH M-STRUCTURE, BUTTERFLY STRUCTURE, AND INDIRECT MEDIATORS

BERNOULLI | LINEAR HYPERGEOMETRIC | QUADRATIC

n Z Acc Z, PREC Z, REC Z Acc Z, PREC Z, REC

5k 60.2 (50.0-61.4) 48.8 (38.9-58.6) 16.8 (12.4-21.1) 72.7 (70.2-75.3) 93.5 (88.7-08.3)  57.8 (51.4-64.1)
10k 85.8 (82.2-80.4) 66.5 (57.4-75.6) 66.2 (57.1-75.4) 97.9 (96.5-09.2)  96.9 (93.8-99.9)  97.0 (94.0-100.0)
15k 97.9 (96.5-99.2) 96.3 (93 3-99.4) 96.8 (93.6-99.9) 98.0 (96.7-99.3)  96.3 (93.3-99.4)  97.2 (94.3-100)

20k 987 (97.6-99.9) 97.4 (94.6-100) 98.0 (95.2-100) 98.7 (98.0-99.4) 99.1 (98.1-100.0)  99.5 (98.8-100)

Table E.7: Performance of Algorithm 1 on a 17-node DAG featuring an M-structure, butterfly structure, and
mediator chain (Figure A.4). Data generating processes represent various discrete noise distributions, lincar and
nonlinar causal mechanisms, and sample sizes (n). Exposure X is a direct cause of outcome Y for all DAGs.
Reported values are averaged over 100 DAGs. Metrics reported are mean accuracy of all labels (Z Acc), mean
precision for partition Z; (Z; PRE), and mean recall for partition Z; (Z; REC). The 95% confidence interval
is reported in parentheses. Independence was determined by chi-square tests with o = 0.005. All experiments
were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.



LDP accurately partitions more complex DAGs

5 Empirical results

9 942
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The mildew benchmark [17] from bnlearn [18]. |Z| = 31 for exposure-outcome pair (mikro_1 — meldug_2).
33/44



LDP enables less biased and more precise ATE estimates

5 Empirical results

A Common Cause Criterion Common Cause Criterion c Common Cause Criterion
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Figure 2: ATE estimation using adjustment sets produced by each baseline for a linear-Gaussian 10-node DAG (Fig.
1). Independence was determined by Fisher-z tests (o = 0.01). Results are for 100 replicates per sample size with 95%
confidence intervals in shaded regions.
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Even if partitions are wrong, adjustment sets are valid

5 Empirical results

Figure A.6: A complex backdoor path illustrates a known failure mode of LDP partition labeling that is still
successful for valid adjustment set identification. In theory, all nodes highlighted in red will be placed in Z; by
LDP. Even though Z? is adjacent to the only instrument in this DAG, this confounder will be discoverable due to
its marginal independence with Z{. Due to its marginal dependence on Z4, confounder Z} will be mislabeled and
placed in Zposy by LDP. This mislabeling persists even under infinite data. Due to its marginal independence
with Zj, collider Z2 will be mislabeled and placed in Z;. Despite these mislabelings, the red node set constitutes
a valid adjustment set per the proofs in Section D.4. LDP returned a valid adjustment set for this structure for

m@m of replicates at n = sples and 98% Noise was

/0 98 100) of rep 1cates at n = 10k samples
ypergeometric, causal mechanisms were quadratic, and

e C| 1-square idependence test.
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Even if partitions are wrong, adjustment sets are valid

5 Empirical results

~

TN
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[ Z7
\_/

=
—

(2§ Jacousal path

[ N2

Figure D.1: Two DAGs that exemplify the behavior of LDP for valid adjustment set detection in the presence
of inter-partition active paths. All red nodes will be placed in Z; by LDP. All confounders for {X,Y} that are
colored green will be mislabeled due to their marginal dependence on Zj or Zs.

Left: Per Lemma D.20, Z}, Z3 and Z¢ will be placed in Zi. Despite their marginal dependence on the only Zs
in this structure, Z? and Z{ will never be placed in Zposr due to the presence of 2}, as Z? AL Z} and 2§ 1L Z}.
Together, the confounders highlighted in red ({2}, 23, Z§, Z}, Z§}) constitute a valid adjustment set that blocks
all backdoor paths and contains no descendents of X. No causal path of either directionality is permissible
between Z§ and Z] per Proposition D.18. If this path were to contain a confounder analogous to Z, this would
be permissible and this node would be placed in Z; by LDP.

Right: This DAG contains a modified butterfly structure, which will be partially retained in Zy ({22, Z4, Z5})
while still blocking all backdoor paths. As there is only one Z in this structure and no backdoor path whose
members are i of Z}, this confc will be mi as Zposy at Step 6. This DAG
also illustrates a case where a member of Zs (Z2) is placed in Z;. Inclusion of 22 does not violate the validity
of the adjustment set returned by LDP, as this node is not a descendent of X and adjusting for {22, Z{, 27}
prevents collider bias.
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Next steps...

5 Empirical results

Applying LDP to:

1. Fairness in organ transplantation.
2. Covariate selection for trial emulation.

3. Instrumental variable discovery for Mendelian randomization.
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Thank you! Any questions?

maasch@cs.cornell.edu
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