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Causal discovery: Inferring causal structure from data
Background

The causal structure of a system describes the relations among variables.
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Causal discovery: Inferring causal structure from data
Background

• Structure must be (partially) known for causal effect estimation and other forms of inference.

• Causal discovery methods infer global and local structures from observational data using
statistical and machine learning methods.
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Theory of causal discovery: SEMs and DAGs
Background

Causal relations can be expressed as structural equation models (SEMs) and visualized as directed
acyclic graphs (DAGs).

A causal DAG, syn. causal Bayesian network, is a directed graphical model whose nodes represent
random variables and whose edges indicate causal relations.
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Causal discovery approaches
Background

. Constraint-based methods using conditional independence tests.
— PC algorithm. [ ]
— Fast Causal Inference (FCI). [ ]

. Score-based methods using optimization.
— Greedy Equivalence Search (GES). [ ]
— DAGs with NO TEARS. [ ]

. Functional causal models.
— Nonlinear additive noise models (ANM). [ ]
— Post-nonlinear additive noise models (PNL). [ ]
— Linear non-Gaussian acyclic models (LiNGAM). [ ]

. Other methods that exploit asymmetries in the data.
— Information-geometric causal inference (IGCI). [ ]
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Constraint-based causal discovery
Constraint-based methods

Premise:
Assumes equivalence between properties of the
data and properties of the causal graph:

• Causal Markov: d-separation in graph G
implies conditional independence in data
distribution P.

X ⊥⊥G Y|Z ⇒ X ⊥⊥P Y|Z

• Faithfulness: conditional independence
implies d-separation.

X ⊥⊥P Y|Z ⇒ X ⊥⊥G Y|Z

Pros and cons
Pros:

• Well-established theory.

Cons:

• Faithfulness is a strong assumption.

• Independence testing is a challenge in
itself, and may require large sample sizes.

• Total tests exponential in node count in
worst case.

• Cannot handle two-variable case.

• Identifies up to a Markov equivalence class.
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PC algorithm
Constraint-based methods

Premise
Assumptions: Causal Markov, faithfulness,
causal sufficiency [ ].

Pros
Pros:

• Straightforward.

• No innate parametric assumptions, though
independence tests (usually) make some.

Cons:

• Returns a Markov equivalence class
instead of a unique DAG.

• Bottlenecked by challenges in conditional
independence testing.

• Cannot handle latent confounding.
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Fast Causal Inference (FCI)
Constraint-based methods

Ground truth FCI [ ]
A PC extension that is asymptotically correct in the

presence of latent confounding.
: Remove edges from full undirected graph (like PC).

: Orient edges by ID’ing colliders (like PC).

: Unorient then partially reorient edges (not like PC).
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Score-based causal discovery
Score-based methods

Premise
Search for DAG that best fits data using scoring
function S, s.t. Ĝ := argmaxG S(D,G).

• Traditionally, this is a combinatorial
optimization problem, but can be
converted to continuous optimization.

• Common scoring functions: Bayesian
Information Criterion (BIC), Minimum
Description Length (MDL; approximates
Kolmogorov Complexity), Bayesian
Gaussian equivalent (BGe), Bayesian
Dirichlet equivalence (BDe), etc.

Pros and cons
Pros:

• No longer reliant on independence testing.

• For continuous optimization, can employ
modern black-box optimizers.

Cons:

• Challenges from combinatorial opt. and
asymmetric directed adjacency matrices.

• Must choose a good scoring function.

• Theoretical guarantees for finite data?

• Search space grows superexponentially
with node count, so it must be restricted.
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Greedy Equivalence Search (GES)
Score-based methods

Premise
-phase greedy search over equivalence classes

using Bayesian scoring criterion [ ]:

. Start with empty graph and iteratively add
edges until goodness-of-fit reaches local
maximum.

. Iteratively eliminate edges until score
reaches local maximum.

Pros and cons
Pros:

• Guarantees under infinite data: global
minimizer when assumptions are met.

Cons:

• Returns Markov equivalence class.

• No guarantees under finite data.

• Assumes causal sufficiency.
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GES: An optimal two-phase algorithm
Score-based methods

GES entails two phases:

. Forward Equivalence Search (FES). Starting with the equivalence class of no dependencies, greedily
make single-edge additions until a local maximum is reached.

. Backward Equivalence Search (BES). Consider all single-edge deletions within the current equivalence
class until a local maximum is reached.

Chickering shows that GES correctly identifies the optimal solution in the large sample limit when applied to
the sparsely-connected search space of equivalence classes.

. The local maximum reached after FES contains the generative distribution. Proof follows from the
assumption that p is DAG-perfect.

. The equivalence class reached after BES must be a perfect map of the generative distribution. Proof
follows from Theorem .
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Functional causal models (FCM)
Functional causal models

Premise: Exploit asymmetries
• Represents effect Y as a function of direct causes X

and unmeasurable noise ϵ, e.g.: Y = f(X) + ϵ.

• Assume X, Y have a direct causal relationship and no
confounders + additional parametric assumptions.

• Fit the FCM for both causal directions. Test for
independence between estimated noise and cause.

• The direction which gives finds the hypothetical
cause and noise terms to be independent is
considered plausible.

• Can use nonlinear regression of Y on X to obtain f̂,
residuals ϵ̂ = Y− f̂(X).

Pros and cons
Pros:

• Well suited for continuous case.

• Handles bivariate inference and
larger structures.

Cons:

• Linearity assumption of LiNGAM
variants [ ] limits applicability to
real-world data.

• Nonlinear additive noise models [ ]
tolerate arbitrary causal functional
forms, but increased applicability
comes with high complexity.
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Bivariate causal direction inference
Functional causal models

• Conditional independence testing requires at least three random variables for the simplest case,
X ⊥⊥ Y|Z, so it cannot identify the bivariate causal model.

• Imposing functional and distributional assumptions on the causal model can reveal statistical and
information-geometric asymmetries that enable identifiability [ – ].
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Post-nonlinear additive noise model (PNL)
Functional causal models

The post-nonlinear model (PNL) is the most general of the well-defined functional
causal models. It is suited for bivariate inference and inference on larger structures.

The PNL accounts for the nonlinear effect of the cause, the inner noise effect, and the
measurement distortion effect in the observed variables.

Under this model, each variable xi in graph G takes the form

xi = fi2
[
fi1(pai) + ϵi

]
( )

where pai are the parents of xi, ϵi is the noise term, and fi1, fi2 are arbitrary functions.
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Post-nonlinear additive noise model (PNL)
Functional causal models

The PNL comes with thorough identifiability results. Most notably, it is not identifiable under the
linear Gaussian setting.

The identifiability conditions of the PNL extend to its special cases, which include:

• Linear additive models (e.g. LiNGAM): Given xi = fi2
[
fi1(pai) + ϵi

]
, fi1 is linear and fi2 is the

identity function.

• Nonlinear additive models (e.g. ANM): fi1 is nonlinear and fi2 is the identity function.

• Multiplicative noise models: The multiplicative noise model xi = pai · ϵi can be expressed as
exp(log pai + log ϵi) where fi1(pai) = log(pai) and fi2(·) = exp(·).
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Thinking locally
Local causal discovery

Global causal discovery is hard. Local causal
discovery can simplify things.

• What if we don’t need to know the
entire causal structure?

• Can we increase efficiency or improve
inference by zooming in only on the
substructures we need?
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Thinking locally
Local causal discovery

Global causal discovery is hard. Local causal
discovery can simplify things.

• What if we don’t need to know the
entire causal structure?

• Can we increase efficiency or improve
inference by zooming in only on the
substructures we need?
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Local causal discovery around exposure-outcome pairs
Local causal discovery
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Thank you! Any questions?

maasch@cs.cornell.edu
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