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However, the study population may differ from the target population due 
to sampling bias.

Examples: 


-Evaluations of educational interventions [Bell et al., 2016].


-Clinical trials for anti-depressants [Wang et al., 2018].

Practitioners often use data from a study (train) population to learn 
decision rules that can be deployed on a target (test) population.
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Outline

3

1. Supervised learning under biased sampling with a minimax 
loss criterion.


2.Policy learning under biased sample selection with a maxmin 
welfare and minimax regret criteria.



1. Supervised Learning
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Machine learning model h : 𝒳 → 𝒴

How to learn a good ? h

However, under sampling bias, the test distribution  may differ from .Q P

Empirical Risk Minimization (ERM)! Given train distribution , loss function P L

ĥ = argminh�̂�P[L(h(X), Y)]



Equal 
proportion

Under-sampled

Over-sampled



Standard ERM is suboptimal in the presence of sampling bias.

ĥOracle = argminh�̂�Q[L(h(X), Y)]

ĥ = argminh�̂�P[L(h(X), Y)]

L(h(X), Y) = (Y − h(X))2



Types of Sampling Bias

Selection Mechanism: Every unit  in test population  is associated with , 
which indicates whether unit  is in the train population.


Sample selection probability of unit  is given by .

i Q Si ∈ {0,1}
i

i 𝔼[Si ∣ Xi, Yi]

1) Ignorable Selection: Selection probabilities only depend on observable 
attributes


.𝔼[Si ∣ Xi, Yi] = 𝔼[Si ∣ Xi]

2) Non-ignorable Selection: Selection probabilities depends on 
observables and unobservables!
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Examples

• Consider a medical study that aims to recruit participants. 


• Younger people may be more likely to participate than older people. 


• People who live farther from a hospital are less likely to participate.

Ignorable Selection

Non-ignorable Selection
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Setting
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Denote the full test distribution , where  are covariates, 

 are outcomes,  are unobservable, binary selection indicators. 


(X, Y, S) ∼ F X
Y S ∈ {0,1}

h*Q = argminh𝔼Q[L(h(X), Y)] Q = FX,Y

Our ideal model minimizes the loss under the true test distribution:


Challenge: We cannot access i.i.d. samples from . 

We can only access .

Q
P = FX,Y∣S=1



Biased Sampling
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Assumption ( -biased sampling): The strength of the 
sampling bias is controlled by ,


.

Γ
Γ ≥ 1

Γ−1 ≤ 𝔼F[S ∣ X, Y]/𝔼F[S ∣ X] ≤ Γ

1)  can affect the probability of sample selection arbitrarily 
much BUT we limit the amount of unexplained variation in 
this probability.

X

Interpretations:

2) Can think of  as governing the level of ignorable selection.Γ



Minimax Learning under Biased Sampling

Idea: Apply DRO (distributionally robust optimization)! [Ben-Tal et al., 2013] 


1) Can generate  via -biased sampling,

2) Have covariate distribution .

P Γ
QX

Let  be the family of test distributions that𝒮Γ(P, QX)

Challenge: The true test distribution is unknown and given , there are 
many possible test distributions under -biased sampling.

P
Γ

For any , we aim to solve

.

QX
argminh sup

Q∈𝒮Γ(P,QX)
𝔼Q[L(h(X), Y)]



Given a loss function  and , we define the Rockafellar-Uryasev (RU) loss 


.

L Γ > 1

LΓ
RU(z, a, y) = Γ−1 ⋅ L(z, y) + (1 − Γ−1) ⋅ a + (Γ − Γ−1) ⋅ (L(z, y) − a)+

Bottom Line Up Front 

RU Regression solves


 .(h*Γ , α*Γ ) ∈ argmin(h,α)∈L2(PX,𝒳)×L2(PX,𝒳)𝔼P[LΓ
RU(h(X), α(X), Y)]

We propose a procedure called RU Regression that solves our worst-
case risk minimization problem for any  such that . QX QX ≪ PX
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Data Neural Networks Loss Computation

ReLU
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Jointly train two neural networks, one for each of  and , using the RU loss 
with a standard optimization algorithm like SGD.

h α



Back to the Toy Example

Ours
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Some intuition on where RU Regression comes from…
Another way to express the robustness set: 


.


Conditionally on , the worst-case distribution upweights examples with high 
loss by  and downweights examples with low loss by .


.


The function  in RU Regression implicitly learns the threshold 
where the worst-case distribution switches from unweighting to downweighting for 
each .

𝒮Γ(P, QX) = {Q Γ−1 ≤
dQY∣X=x(y)
dPY∣X=x(y)

≤ Γ ∀x, y,  and FX = QX}
x

Γ Γ−1

dQ*Y|X=x(y) = {
Γ ⋅ dPY|X=x(y)  if L(h(x), Y) ≥ qη(Γ)(L(h(x), Y))

Γ−1 ⋅ dPY|X=x(y) o.w.

α(x) qη(Γ)(L(h(x), Y))

x



2. Policy Learning
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Refresher on Policy Learning (No Sampling Bias)
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P

Study Potential Outcome Distribution  
 (X, Y(0), Y(1)) ∼ P

Randomized Treatment Assignment  
W ∼ Bernoulli(e)

Treated 
( )W = 1

Control 
( )W = 0

Pobs

Study Observed Data Distribution  
 

 
(X, Y, W ) ∼ Pobs

Y = Y(W )

Can think of learning policies from RCT data as an offline contextual bandit problem.

Aim to learn a policy  from policy class  that maximizes the welfare

.


When  is unconstrained, the optimal policy is

,


where  is the CATE function: .


π : 𝒳 → {0,1} Π
VP(π) = 𝔼P[Y(π(X))]

Π
πnon−robust(X) = 𝕀(τ(X) ≥ 0)

τ τ(x) = 𝔼P[Y(1) − Y(0) ∣ X = x]
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Challenge #1: Reducing to supervised learning is delicate.


Challenge #2: Maximin welfare is generally not considered a

good criterion for treatment choice problem; minimax regret is often 
preferred (Savage, 1951; Manski, 2011).

Recent works demonstrate that we can learn policies through (modified) 
supervised learning algorithms (Kitagawa & Tetenov, 2018; Athey & Wager, 2021; 
Mbakop & Tabord-Meehan, 2021).

What about policy learning under biased sample selection?

Policy Learning = Supervised Learning?



Data-Generating Process under Sampling Bias

 are potential outcome distributions, i.e. distributions over .

 is an observed data distribution, i.e. a distribution over .

P, Q (X, Y(0), Y(1))
Pobs (X, Y, W)

P

Run an RCT 

Pobs

Biased Sampling

Q

Target Population Study Population

Assumption: RCT is well-executed.
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Setting
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Denote the full target distribution .

1. The target potential outcome distribution  is .

2. The study potential outcome distribution  is .

3. We run an RCT on  to generate .


We are interested in learning a policy that attains high welfare under :

.


We assume  obeys -biased sampling:

.

(X, Y(0), Y(1), S) ∼ F
Q FX,Y(0),Y(1)
P FX,Y(0),Y(1)∣S=1

P Pobs

Q
VQ(π) = 𝔼Q[Y(π(X))]

S Γ
Γ−1 ≤ 𝔼F[S ∣ X, Y(0), Y(1)]/𝔼F[S ∣ X] ≤ Γ



Biased Sampling to RCT

22

If we has access to the study potential outcome distribution , we 
could proceed as before in the supervised learning case. 


However, we only have access to , so we must define our 
robustness set as .

P

Pobs
𝒮Γ(Pobs, QX)



Robustness Set for Policy Learning
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Pobs

P P

Run an RCT

Biased Sampling

Q Q Q Q Q Q Q Q

Biased Sampling ℛΓ(P, QX)

𝒯(Pobs)

𝒮Γ(Pobs, QX){
Missing Data Problem

Sampling Bias Problem



How to measure performance?

Many possible objectives to consider:


Max-min [Adjaho and Christensen, 2022,  Mu et. al., 2021, Savage 1951, Si et. al, 2022, Wald 1950] 
.sup

π∈Π
inf

Q∈𝒮Γ(Pobs,QX)
𝔼Q[Y(π(X))]

Max-min gain over a baseline [Ben-Michael et. al. 2021, Kallus and Zhou et. al. 2021] 
.


Minimax regret [Manski 2004, Savage 1951] 

, where .

sup
π∈Π

inf
Q∈𝒮Γ(Pobs,QX)

𝔼Q[Y(π(X))] − 𝔼Q[Y(π0(X))]

inf
π∈Π

sup
Q∈𝒮Γ(Pobs,QX)

RQ(π) RQ(π) = sup
π′ ∈Π

𝔼Q[Y(π′ (X))] − 𝔼Q[Y(π(X))]
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Preliminaries

Policy class  - unconstrained, binary-valued functions.
Π
Our identification results depend on the conditional value-at-risk 
(CVaR) of the outcomes. The  of a random variable  is given 
by


,

where  is the -th quantile of .


η − CVaR Z

CVaRη(Z) = 𝔼[Z ∣ Z ≥ qη(Z)]
qη(Z) η Z
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Optimal Policies
Optimal policies of these objectives are identifiable under  , and we have closed-form 
expressions for them!


Pobs

Max-min π*maxmin(x) = 𝕀(τ(x) ≥ HΓ(x))

Max-min Gain π*gain(x) = 𝕀(π0(x) = 0)𝕀(τ(x) ≥ H+
Γ (x))

Minimax Regret
π*regret(x) = 𝕀(τ(x) ≥ (H+

Γ (x) + H−
Γ (x))/2)

+𝕀(π0(x) = 1)𝕀(τ(x) ≥ H−
Γ (x))

Can think of  as identifiable nuisance parameters that depend on

 ,  for , where 

HΓ( ⋅ ), H+
Γ ( ⋅ ), H−

Γ ( ⋅ )

CVaRζ(Γ)(Y(w) ∣ X = x) CVaRζ(Γ)(−Y(w) ∣ X = x) w ∈ {0,1} ζ(Γ) =
1

Γ + 1
.
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How to learn the optimal policies?

Naive two-stage approach:

1)Estimate  using data from .

2)Plug them into closed-form expressions from for the optimal 

policies

τ( ⋅ ), HΓ( ⋅ ), H+
Γ ( ⋅ ), H−

Γ ( ⋅ ) Pobs

Can we learn the optimal policies directly?

Yes! We can learn the optimal max-min and max-min gain policies in 
one step using RU Regression (does not require separate estimation 
of nuisance parameters!).
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Loss Minimization Approach

1)  Given  and , define the RU loss [Sahoo et. al., 2022]





2) Solve the RU Regression problem.

.


3) Return the policy .


v Γ > 1

LΓ
RU(z, a; x, y, w) = Γ−1(−v(z; x, y, w)) + (1 − Γ−1) ⋅ a + (Γ − Γ−1)(−v(z; x, y, w) − a)+

(hΓ, αΓ) ∈ arginf(h,α)∈ℋ×𝒜𝔼P[LRU(h(X), α(X, W), Y)]

𝕀(hΓ(x) ≥
1
2 )

Theorem: We can specify  so that RU Regression yields . 


Similarly, we can specify  so that RU Regression yields .

vmaxmin(z; x, y, w) π*Γ,maxmin(x)
vgain(z; x, y, w) π*Γ,gain(x)
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RU Regression for Policy Learning
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Data Neural Networks Loss Computation
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Super similar to supervised learning 
case, except 

1. Auxiliary function  takes in .

2. Restrict the function  to output [0,1] 

with sigmoid activation.

α X, W
h
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Conclusions
1. In many settings, we need to learn decision rules from data that may be a biased sample 

from the population of interest.


2.We considered methods for learning with robust guarantees under biased sample 
selection.


3.The learning criterion we use matters; and non-robust, maxmin, maxmin gain, and 
minimax regret decision rules are generally not the same.


4. RU Regression is a simple and practical avenue to learning decision rules from biased 
data using deep learning.

Happy to chat and collaborate :)

 rsahoo@stanford.edu 


roshni714.github.io
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