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Practitioners often use data from a study (train) population to learn
decision rules that can be deployed on a target (test) population.

However, the study population may differ from the target population due
to sampling bias.

Examples:
- Evaluations of educational interventions [Bell et al., 2016].

- Clinical trials for anti-depressants [Wang et al., 2018].



Outline

1. Supervised learning under biased sampling with a minimax
loss criterion.

2.Policy learning under biased sample selection with a maxmin
welfare and minimax regret criteria.



1. Supervised Learning



Machine learning model i : & — ¥

How to learn a good h?

Empirical Risk Minimization (ERM)! Given train distribution P, loss function L

A\ A\

h = argmin, [Ep[L(1(X), Y)]
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L(h(X),Y) = (Y = i(X))

Learned Regression Functions

—-— h (Standard ERM)
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Standard ERM is suboptimal in the presence of sampling bias.

A\

lAzOrade = argmin, [ »[L(A(X), ¥)]

A\

h = argmin,

A\




Types of Sampling Bias

Selection Mechanism: Every unit i in test population Q is associated with $; € {0,1},
which indicates whether unit 1 is in the train population.

Sample selection probability of unit 7 is given by E[S; | X}, Y.

1) lgnorable Selection: Selection probabilities only depend on observable
attributes

"[Si ‘ Xl-, Yl] — _[Si ‘ Xi]-

2) Non-ignorable Selection: Selection probabilities depends on
observables and unobservables!



Examples

* Consider a medical study that aims to recruit participants.
* Younger people may be more likely to participate than older people.

Ignorable Selection

* People who live farther from a hospital are less likely to participate.

Non-ignorable Selection



Setting

Denote the full test distribution (X, Y, S) ~ F, where X are covariates,
Y are outcomes, S € {0,1} are unobservable, binary selection indicators.

Our ideal model minimizes the loss under the true test distribution:

hg = argmin, EH[L((X), Y)] Q= Fxy
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Biased Sampling

Assumption (I -biased sampling): The strength of the

sampling bias is controlled by I > 1,

Interpretations:

1) X can affect the probability of sample selection arbitrarily

much BUT we limit the amount of unexplained variation in
this probability.

2) Can think of 1 as governing the level of ignorable selection.
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Minimax Learning under Biased Sampling

Challenge: The true test distribution is unknown and given P, there are
many possible test distributions under I -biased sampling.

Let S(P, Q) be the family of test distributions that

1) Can generate P via | -biased sampling,
2) Have covariate distribution (y.

Idea: Apply DRO (distributionally robust optimization)! (gen-Tai et al., 2013]

For any (Jy, we aim to solve
argmin,  sup  Ep[L(A(X), Y)].
QECS)F(PaQX)




Bottom Line Up Front

We propose a procedure called RU Regression that solves our worst-
case risk minimization problem for any (Jy such that O, < P.

Given a loss function L and I > 1, we define the Rockafellar-Uryasev (RU) loss

LE @ ay) =T L)+ =T a+ T =T Lzy) - a),

RU Regression solves

(h*, aff) € argmin

(h,o)EL(Px, L)YXL*(Py, )




Data Neural Networks Loss Computation

> h o h(x) l l

ReLU —” Lry

> 04 —»Cl(x)

Jointly train two neural networks, one for each of 4 and ¢, using the RU loss
with a standard optimization algorithm like SGD.



Back to the Toy Example

Learned Regression Functions h(X)
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Some intuition on where RU Regression comes from...

Another way to express the robustness set:
q dQYlex(y)
SF(P,Qx)={Q 7 < <I' Vx,y, and F =Qx}-
dP Y\sz(y)

Conditionally on x, the worst-case distribution upweights examples with high
loss by " and downweights examples with low loss by "1,

o J T Pxs0) LG, Y) 2 g,y (LG, V)
QY|X=x(y) — F—l : dPY|X=x(y) oW, _

The function a(x) in RU Regression implicitly learns the threshold qﬂ(r)(L(h(x), Y))

where the worst-case distribution switches from unweighting to downweighting for
each x.
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2. Policy Learning




Refresher on Policy Learning (No Sampling Bias)

>

Randomized Treatment Assignment
W ~ Bernoulli(e)

>

Study Observed Data Distribution
X, Y,W)~P_ .
Y =Y(W)

Study Potential Outcome Distribution
(X, Y(0),Y(1)) ~ P

Aim to learn a policy 7 : & — {0,1} from policy class I1 that maximizes the welfare

Vp(m) = Ep[ Y(7(X))].
When 11 is unconstrained, the optimal policy is

ﬂnon—mbust(X) — H(T(X) > O)’

where 7 is the CATE function: 7(x) = E,[Y(1) — Y(0) | X = x].

Can think of learning policies from RCT data as an offline contextual bandit problem.
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Policy Learning = Supervised Learning?

Recent works demonstrate that we can learn policies through (modified)
supervised learning algorithms (Kitagawa & Tetenov, 2018; Athey & Wager, 2021;
Mbakop & Tabord-Meehan, 2021).

What about policy learning under biased sample selection?

Challenge #1: Reducing to supervised learning is delicate.
Challenge #2: Maximin welfare is generally not considered a

good criterion for treatment choice problem; minimax regret is often
preferred (Savage, 1951; Manski, 2011).
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Data-Generating Process under Sampling Bias

P, O are potential outcome distributions, i.e. distributions over (X, Y(0), Y(1)).
P . is an observed data distribution, i.e. a distribution over (X, Y, W).

- -

Biased Sampling Run an RCT

Target Population Study Population

Assumption: RCT is well-executed.
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Setting

Denote the full target distribution (X, Y(0), Y(1),5) ~ F.
1. The target potential outcome distribution Q) is Fy vy y(1)-

2. The study potential outcome distribution £ is £y y«) y(1)s=1-
3. We run an RCT on P to generate P, .

We are interested in learning a policy that attains high welfare under Q:
Vo(m) = EolY(m(X))]

We assume S obeys | -biased sampling:
' <EAS | X, Y(0), Y(DI/ERS | X1 <T.
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Biased Sampling to RCT

If we has access to the study potential outcome distribution P, we
could proceed as before in the supervised learning case.

However, we only have access to P, ., so we must define our
robustness setas & (P, ., Oy).
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Robustness Set for Policy Learning

CS)F( obs? QX)
N

Sampling Bias Problem E E E E

Biased Sampling Biased Sampling % (P9 QX)

Missing Data Problem

v

Run an RCT tq/(I)ObS)
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How to measure performance?

Many possible objectives to consider:

Max-min [Adjaho and Christensen, 2022, Mu et. al., 2021, Savage 1951, Si et. al, 2022, Wald 1950]

sup inf = ol Y (7(X)].
mell QECS)F(PObS’QX)

Max-min gain over a baseline [Ben-Michael et. al. 2021, Kallus and Zhou et. al. 2021]

sup it E,|[Y(#(X))] — Eo[Y(my(X))]-
rell QEST(P 5. 0x)

Minimax regret [Manski 2004, Savage 1951]

inf sup  Ry(7), where Ry(m) = sup k| Y(7'(X))] — E,[Y(7(X))].
€l oe s (P,,,.0y) r'ell
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Preliminaries

Policy class I1 - unconstrained, binary-valued functions.

Our identification results depend on the conditional value-at-risk

(CVaR) of the outcomes. The n — CVaR of a random variable Z is given
9

CVaR,(Z) = E[Z | Z > q,(2)],
where qn(Z) is the n-th quantile of Z.
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Optimal Policies

Optimal policies of these objectives are identifiable under P _, ., and we have closed-form
expressions for them!

Max-min e () = 1(7(x) 2 Hp(x))
Max-min Gain 7 i) = 1(7(x) = 0)I(z(x) > Hy (x))

+1(7y(x) = DI(z(x) > Hp (x))

Minimax Regret
() = I(z(x) > (Hf (x) + Hf (x))/2)

regret

Can think of Hp( - ), H;f( - ), H (- ) as identifiable nuisance parameters that depend on

CVaR/(Y(w) | X = x), CVaRy(—Y(w) | X = x) forw € {0,1}, where {(I') = "

26
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How to learn the optimal policies?

Can we learn the optimal policies directly?
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Loss Minimization Approach

(z;x,y,w) so that RU Regression yields 7* (x).

Theorem: We can specify v, T maxmin

axmin

(z; x,y,w) so that RU Regression yields 7* . (x).

Similarly, we can specify Vouin I,eain

1) Given v and 1 > 1, define the RU loss [Sahoo et. al., 2022]
Lz a;x,y,w) =T (=v(@x,y,w) + (1 =T - a+ T =T H)(—vzx,y,w) —a),

2) Solve the RU Regression problem.
(hp, ar) € arginf, e st plLp/(h(X), a(X, W), Y)].

1
3) Return the policy [I(hr(x) > 5)
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RU Regression for Policy Learning

Data Neural Networks Loss Computation

Super similar to supervised learning
x Lpy case, except

1. Auxiliary function a takes in X, W.
. 2. Restrict the function / to output [0,1]

@ —rabew) with sigmoid activation.
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Conclusions

1. In many settings, we need to learn decision rules from data that may be a biased sample
from the population of interest.

2.We considered methods for learning with robust guarantees under biased sample
selection.

3. The learning criterion we use matters; and non-robust, maxmin, maxmin gain, and
minimax regret decision rules are generally not the same.

4. RU Regression is a simple and practical avenue to learning decision rules from biased
data using deep learning.

Happy to chat and collaborate :)
rsahoo@stanford.edu
roshni/14.qgithub.io
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