
LOCAL CAUSAL DISCOVERY FOR
STRUCTURAL EVIDENCE OF DIRECT DISCRIMINATION

JACQUELINE MAASCH1, KYRA GAN1, VIOLET CHEN2, AGNI ORFANOUDAKI3, NIL-JANA AKPINAR4∗, FEI WANG5

1Cornell Tech, 2Stevens Institute of Technology, 3University of Oxford, 4Amazon AWS, 5Weill Cornell (∗Done outside Amazon)

Efficient graph learning enables
causal fairness analysis

in complex decision systems.

DETECTING DIRECT DISCRIMINATION == CAUSAL PARENT DISCOVERY
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Fig. 1: The standard fairness model (SFM) with protected attribute X, outcome Y , confounders C, and mediators M
(bidirected edges denote latent confounding) [1]. We can project the true causal DAG onto the SFM to facilitate fairness
analysis. This work identifies direct mechanisms of unfairness in a data-driven way by first discovering M ∪C.

LD3: CAUSAL PARENT DISCOVERY FOR FAIRNESS ANALYSIS
• APPROACH. We introduce LD3, a constraint-based discovery method that leverages the causal partition taxonomy proposed in [2] to label

variables by their causal relation to the protected attribute X and outcome Y (Fig. 2), rather than learning the full graph. We assume that Y has
no observed descendants and no unobserved parents (other latent variables are permitted).
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Fig. 2: The nodes of any DAG can be uniquely partitioned into 8 disjoint subsets defined by the paths shared with a given pair {X,Y } [2]. This
applies to DAGs of any size; triple DAGs are for illustration only. Partition Z1 generalizes the confounder, Z2 the collider, Z3 the mediator, etc.

• COMPLEXITY. LD3 discovers parents(Y ) (∈ Z1 ∪ Z3 ∪ Z4) in a linear number of conditional independence tests w.r.t. variable set size.
• FAIRNESS CRITERIA. LD3 results directly evaluate the SDC and can be used as a valid adjustment set for the WCDE:

Definition 1 (Structural direct criterion (SDC), Plečko and Bareinboim
2024). A structural causal model is fair w.r.t. direct discrimination if
and only if the following evaluates to 0:

SDC = 1(X ∈ parents(Y )). (1)

Definition 2 (Weighted controlled direct effect (WCDE), Pearl 2000). Let M′ ⊆ M
denote mediators that are parents of Y . WCDE is a qualitative indicator of direct dis-
crimination, as it is nonzero if and only if X ∈ parents(Y ) (i.e., SDC = 1):

WCDE =
∑
m′

(
E[Y | do(x,m′)]− E[Y | do(x∗,m′)]

)
P (m′). (2)

RESULTS
• FASTER. LD3 ran 46–5870× faster than baselines on real-world data.
• MORE PLAUSIBLE RESULTS. Parent sets predicted from real-world data aligned with expert knowledge better than baselines.
• ENABLES EFFECT ESTIMATION. LD3 returns a valid adjustment set for the WCDE under a new graphical criterion.

Fig. 3: Baseline results for parent discovery on the Sangiovese benchmark (bnlearn). Independence test count (Tests) is reported for constraint-
based methods. Time is in seconds. Shaded regions denote 95% confidence intervals over ten replicates.

CASE STUDY: LIVER TRANSPLANT ALLOCATION
Fairness query: Are sex-based disparities due to direct discrimination? ⇒ Graphical query: Is patient sex (S) a parent of liver allocation (L)?
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Fig. 4: Predicted parent sets for OPTN STAR datasets (’17-’19, ’20-’22). Known parents of L are in yellow. Exposure = patient sex (S; red),
outcome = receiving a liver (L; blue). AE = active exception case; BT = blood type; DX = diagnosis; ED = education; ET = ethnicity; EX = exception
type; IA = initial age; IM = initial MELD; PM = payment method; RE = region; WE = weight. For all methods, SDC = 1 and WCDE p-value = 0.000.
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