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Presentation Overview
1 Background

1. Background.
2. Conceptual Framework:

— Compositional Causal Reasoning (CCR).
— Compositional Consistency Evaluation.

3. Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints.

4. Results: Empirical Demonstration in Language Models.
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Reasoning in Al
1 Background

» What is reasoning?

Process of applying logic to draw valid

conclusions from new or prior information,

with the aim of seeking truth (Wikipedia).
Activity of forming new beliefs based on existing beliefs and new evidence.

)P(H

Bayesian inference: P(H | E) = %

E)
Etc.

) where His hypothesis and E is evidence.

» Many forms: quantitative, logical, visual, spatial, moral, legal, etc.

» We consider two forms in tandem: causal reasoning and compositional reasoning.
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Reasoning in Al: Two Issues
1 Background

Increase reasoning capacities: | Principled evaluation frameworks:

Published as a paper at ICLR 2025
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REASONING ELICITATION IN LANGUAGE MODELS
VIA COUNTERFACTUAL FEEDBACK

Jacqueline R. M. A. Maasch ' Alihan Hilyiik®> Xinnuo Xu® Aditya V. Nori® Javier Gonzalez*

Alihan Hiiyiik,"! Xinnuo Xu, Jacqueline Maasch,® Aditya V. Nori,t Javier Gonzslez! Abstract

Harvard University, ‘Microsoft Research Cambridge, $Cornell Tech GROUND TRUTHA': THE COST OF PATH A — C'1$ 3.5

Causal reasoning and compositional reasoning are @5 20—(©)
two core aspirations in generative AL Measuring

the extent of these behaviors requires principled FORM 1: GLOBAL QUERY | FORM 2: COMPOSITION
1 INTRODUCTION evaluation methods. We explore a unified perspec-

tive that considers both behaviors simultancously, QL: ot is tho cost | | | @23 What is Lhe sum
Large language models (LLMs) are shown to be ca- Factual Question Phi3 Mini termed compositional causal reasoning (CCR): “eain Ao GG et

Ao BanaBoor

the ability (0 infer how causal measures compose

pable of delivering astounding performance in nu- (I
merous tasks across various domains. Examples | has both two and three as prime and, equivalently, how causal quantities propagate ’—L|
stretch from writing assistants (Gan et al., 2023), to | factors. Is {N'} divisible by six? g through graphs. We instantiate a framework for A1: 3.5
sentiment analysis in social media (Simmering and 02 the systematic evaluation of CCR for the average
. T . Question < treatment effect and the probability of necessity
Huoviala, 2023), and even in healthcare < ey, s prook o conte v domon Figure 1. Compositionally consistent esponses (o two formula-
. i A number is divisible by six if it 4 o tions of a simple (non-causal) query. Reasoning is externally valid
wenen ereasing sy i s ot ynov. | oo s tredzapite | £ s e of L ko sl g sl o 1
- se systems is faciors. Suppose that {} ha els in the LLama, Phi, an amilics. On
erincreasing 2 o1
undeniable, it is still rather unclear to what extent | three as one| ‘m Hshpnme lac':ovs g a math word problem, our framework revealed
this accuracy is due to effective recall of their train- | (o Tron woukt & fove oesn | - a range of taxonomically distinct error patterns. ; ;
ing 4 cy o abilt b o) Then s e oer ‘Additonally, COR erros increased with the com. Baroni, 2023)." Ttis both a means of generalization and of
ing data vs. a genuine ability to reason extract- een divisible by six’ - = ity:
g g ity Y N plexity of causal paths for all models except o1, coping with complexity: problems can be reformulated as

simpler subproblems connected by compositional rules.

ing, understanding, and adapting the fundamental
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Causal Reasoning
1 Background

» Causal reasoning is a defining outcome of human evolution [1].

» Enables humans and machines to learn generalizable lessons about the mechanics
of the universe [2].

» Human-like Al might require reasoning at all 3 levels of Pearl’s Causal Hierarchy [3]:

1. Associational.
2. Interventional.
3. Counterfactual.
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Compositional Reasoning
1 Background

« Human-like Al might also require compositional reasoning [4]: the capacity to rec-
ognize and synthesize novel combinations of previously observed concepts [5].

» Compositionality is ubiquitous in the physical world, symbolic systems, human cognition
[6], visual perception [7], and language [8].

+ Itis a means of generalization and of coping with complexity.
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Compositionality is Ubiquitous

1 Background

[Algebm. Let f(z) = 2z,

,h(z) =z + 2. Solve h(y(f(x))). ]

Physics.

QC

Subatomic particles.

i
'o@

N ,
\. S/ ’
.

Carbon-12 atom. Gmphzte structure.

Graphical modeling.

Local subgraphs.

Global graph.




Compositionality + Causality
1 Background

A mathematical language for evaluating compositional + causal reasoning simultaneously:

+ Graphical modeling. Expressive representations for joint distributions, their factors,
and the propagation of quantities through systems [9, 10, 11].

+ Causal inference. Causal effect decomposition plays a central role in:
— Mediation analysis [12, 13].

— Fairness analysis [14].
— Covariate adjustment in the presence of latent variables [15, 16].
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Contributions
2 Our Work

. A compositional view of causal reasoning in LMs. The ability to infer causal mea-

sure compositions (inductive reasoning) and decompositions (deductive reasoning).

. Metrics and reasoning taxonomy. Four categories of reasoners.
. An evaluation framework. For inductive CCR in causal graphs with cutpoints.

. Preliminary empirical demonstration. Evaluated CCR in seven LMs, with and with-

out chain-of-thought (CoT) prompting.



Results Teaser
2 Our Work

2. .

PSR RS ST @SS
ol ol

M CoT 1 No CoT +« 4

» A simple CCR task revealed taxonomically distinct error patterns.
* Only o1 was fully correct on this task.
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Framework: Compositional Causal Reasoning Evaluation
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Preliminaries: Causal Models

3 Framework: Compositional Causal Reasoning Evaluation

Definition 1: Structural causal model (SCM) [17]
An SCM is a tuple M := (V,U, F,p(u)):
« U= {U;}l_, are exogenous variables determined by factors outside M;
« V={V;}IL, are observed endogenous variables determined by variables in UU V;

« F = {fi}i., are structural functions such that v; = fi(pa, , w);
* p(u) is the distribution over U.
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Preliminaries: Causal Measures

3 Framework: Compositional Causal Reasoning Evaluation

Definition 2: Average treatment effect (ATE)

Let X denote a binary treatment variable and Y an outcome. We express the ATE as the
following difference of expectations:

ATE = E[Y | do(X = 1)] — E[Y | do(X = 0)]. (1)
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Preliminaries: Causal Measures

3 Framework: Compositional Causal Reasoning Evaluation

In propositional logic, we say that

1. Xis necessary for Y when Y = X.
2. X s sufficient for Y when X = Y.
3. X is necessary and sufficient for Y when X <— Y.

Pearl [18] introduced a probabilistic framework, the probabilities of causation (PrC):

1. Probability of necessity (PN).
2. Probability of sufficiency (PS).
3. Probability of necessity and sufficiency (PNS).
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Preliminaries: Causal Measures

3 Framework: Compositional Causal Reasoning Evaluation

Definition 3: Probability of necessity and sufficiency (PNS) [18]
Let X and Y denote binary random variables, where X is a cause of Y.

Let x and y denote the propositions or events that X = TRUE and Y = TRUE, respectively,
while ¥’ and y’ denote that X = FALSE and Y = FALSE.

The probability that x is necessary and sufficient to produce y is given as

PNS := P(yy, vy) = P(x,y)PN + P(x', y)PS. (2)
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Preliminaries: Causal Measures

3 Framework: Compositional Causal Reasoning Evaluation

Why use the PNS for reasoning evaluation?

1. Variables of interest are binary and probabilities are bounded by 0 and 1.

2. Easy to translate PrC queries to text prompts designed to elicit logical, mathematical,
probabilistic, and/or causal reasoning [19, 20].

3. The PNS and ATE coincide under certain conditions, and thus share convenient com-
positional properties.
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Compositional Causal Reasoning

3 Framework: Compositional Causal Reasoning Evaluation

Definition 4: Compositional Causal Reasoning (CCR)

The ability to infer compositions and decompositions of causal measures in factual
and counterfactual worlds.

Inductive CCR: Deductive CCR:

gof
@/@ OSNOEN0)

A. INFER go f FROM f, g B. INFER f FROM go f, g
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A Classic Example

3 Framework: Compositional Causal Reasoning Evaluation

Example 1: Decomposition of total causal effects in linear SCMs [17]

Let TE be the total effect, NDE the natural direct effect, and NIE the natural indirect effect.
When causal functions are linear,

TE = NDE + NIE . (3)
~ M~ =~
global local local

TExy = a + be
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Compositional Consistency Evaluation

3 Framework: Compositional Causal Reasoning Evaluation

Definition 5: Compositional consistency

Reasoning is compositionally consistent when theoretically equivalent com-
positions are assessed to be equal.
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Compositional Consistency Evaluation

3 Framework: Compositional Causal Reasoning Evaluation

Notation Meaning

M = (V,U, F,p(u)) An SCM representing the problem.

A A model (e.g., an LM).

) The set of all causal measures.

ped A measure of interest (e.g., the ATE).

Vx A causal query about the value of p w.r.t. X C V.
i The true value of ¢x.
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Compositional Consistency Evaluation

3 Framework: Compositional Causal Reasoning Evaluation

Each query is encoded as a question template

Qe = (x,5), (4)

where ¢y is implicit (i.e., not directly stated) and S is the surface form that expresses ac-
cessory details (e.g., the background of a math word problem) [21].

Q.. is expressed in a form comprehensible to A (e.g., text, image, etc.).
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Compositional Consistency Evaluation

3 Framework: Compositional Causal Reasoning Evaluation

Solutions to causal queries are obtained by
Px = A<Q99x)

Evaluation entails computing approximation errors of form

699x = 6(90:7 @x)

or similar, for some metric 6.
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Compositional Consistency Evaluation

3 Framework: Compositional Causal Reasoning Evaluation

Definition 6: External validity

Reasoning is externally valid when inferred quantities are equivalent to ground truth, up to
some error d:

0(0x; Px) < 0. (7)
In Example 1, this entails that the following are less than §:
« O(TE}y, TExy)

° Q(TE;Y N/D\Exy -+ ﬁﬁxy)
* etc.
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Compositional Consistency Evaluation

3 Framework: Compositional Causal Reasoning Evaluation

Definition 7: Internal consistency

Reasoning is internally consistent when quantities that are theoretically equivalent are in-
ferred to be equivalent, up to some error §:

Px = P = 0(Px, Pu) < 0. (8)

Note that inferred quantities are compared to each other, not to ground truth. In Example 1,
this entails that the following are less than §:

. Q(ﬁx% NDExy + @XY)
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Taxonomy of Reasoners

3 Framework: Compositional Causal Reasoning Evaluation

Definition 8: Taxonomy of Reasoners

1. Valid-consistent (VC). 3. Invalid-consistent (IC).
2. Valid-inconsistent (VI). 4. Invalid-inconsistent (ll).
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Algorithm:
Inductive CCR Evaluation in Graphs with Cutpoints
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Case Study: Graphs with Cutpoints

4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

X LC ‘D)
’ S

* A cutpoint is any node contained in multiple biconnected components (BCCs):

— Maximal biconnected subgraphs induced by a partition of edges. Two edges are
in the same partition if and only if they share a common simple cycle [22].
— E.g., the blue, pink, and maroon subgraphs.

* Removing a cutpoint disconnects the graph (e.g., nodes C, D).
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Assumptions: Graphs with Cutpoints
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

(4)
X . E_'\ ? )

For simplicity, we consider causal DAGs satisfying the following:

A1 Only one root node X (i.e., the cause of interest).

A2 Only one leaf node Y (i.e., the effect of interest).
A3 At least one cutpoint.

A4 No unobserved confounders.
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PNS Composition Across BCCs

4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

Theorem 1: PNS composition across BCCs

Given DAG Gxy satisfying assumptions A1-A4 where Y is monotonic in X, the PNS for root
X and leaf Y composes as

PNSyy = ] PNSg, (9)

{Ri,Li}EC

where C is the set of all BCCs in Gyy and R;,L; are the root and leaf of BCC C;, respectively.
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Commutative Cut Trees
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

Definition 9: Commutative cut tree (CCT)

Let Gxy be a causal graph satisfying A1-A4 and let ¢ be a causal measure that composes
according to an associative function over BCCs (e.g., multiplication as in Theorem 1).

CCT Cxy is a transformation of Gxy that models all CCR pathways from root X to leaf Y for
measure ¢. Cxy is obtained by a two-step transformation of Gxy:

1. Construct a causal chain with nodes XU S U Y, where S is a topological ordering of the
cutpoints in Gyy.

2. Add a directed edge between any non-adjacent nodes in the chain to yield a complete
graph where all directed paths point from root X to leaf Y.
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Commutative Cut Trees
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

vV '\ |
‘D) [ 7, @—» 0—t P )—».Q\—»@
| 00

A. DAG Gapr B. DAG Gnyg
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CCTs: A Useful Abstraction

4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

+ Abstract away complexity in DAG by collapsing BCCs into single edges.
+ Evaluate on complex DAGs with cutpoints as if they were simply directed chains.

 Simplify problem representation by (1) marginalizing out variables unnecessary for
valid causal inference and (2) visualizing pathways of composition.

+ A design tool for formulating reasoning tasks.

« Interpretable, intuitive tool for graphically representing reasoning correctness.
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Running Example: Intuition for Algorithm 1
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

o - hog >
G} % O==0
y ) gof
O s

hogo
A. ORIGINAL DAG Gxy B. CCT Cxy
Global PNSxy
Local PNSXc, PNSXD, PNSCD,

PNScy, PNSpy

Composition PNSxcPNScy, PNSxpPNSpy,
PNSxcPNScpPNSpy
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Results: Empirical Demonstration in LMs
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Models

5 Results: Empirical Demonstration in LMs

MODEL PARAMETERS LINK

Phi-3-Mini-128K-Instruct (Abdin et al., 2024) 3.82B https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
Llama-2-7b-Chat-HF (Touvron et al., 2023) 6.74B https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
Llama-3-8B-Instruct (Dubey et al., 2024) 8.03B https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
Llama-3.1-8B-Instruct (Dubey et al., 2024) 8.03B https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
OpenMath2-Llama3.1-8B (Toshniwal et al., 2024) 8.03B https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B
GPT-40 > 175B https://openai.com/index/gpt-4o-system-card/

ol > 175B https://openai.com/o01/

Table E 1. Large language models used for inference. The exact number of parameters in GPT-40 and o1 is not public knowledge, so we
note the size of GPT-3 as a lower bound (B denotes billions).
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Factual & Counterfactual Prompts

5 Results: Empirical Demonstration in LMs

= ogiox
6 ‘C\)—u\b) % Q @
y ) gof
(8)

hogof
A. ORIGINAL DAG Gxy B. CCT Cxy

« SCM M = (V,U, F,p(u)): V are binary, f € F are logical or (V), p(u) is Bernoulli.
* Logical or is a monotone boolean function.

» Each node in the DAG is a person in our word problem: X = Xinyu, A = Ara, B = Becca,
C = Celine, D = Daphne, E = Emma, F = Fox, Y = Yasmin.

vi = pai, V...V pay V Ber(0.7) (10)
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Factual & Counterfactual Prompts

5 Results: Empirical Demonstration in LMs

Factual prompt

Xinyu, Ara, Becca, Celine, Daphne, Emma, Fox,
and Yasmin are going to a party, where the host
is going to distribute candies. Xinyu will

be happy if she gets at least 7 candies. Ara

will be happy if Xinyu is happy or if he gets

at least 7 candies. Becca will be happy if...

After distributing the candies, Xinyu gets 4,

Ara gets 6, Becca gets 5, Celine gets 10, Daphne Now, suppose that Xinyu is happy regardless of
gets 1, Emma gets 1, Fox gets 4, and Yasmin gets the candy distribution. With this assumption,
3. Is Celine happy? Be as concise as possible. is Celine happy? Be as concise as possible.

« PNSxc: Simulate potential outcomes X = TRUE, X = FALSE (Xinyu is or is not happy).
Query for value of C (Celine is or is not happy).

« PNSpy: Interventions on D (Daphne’s happiness), queries on Y (Yasmin’s happiness).
» CoT formulation: Demonstrated one factual and one counterfactual example.
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Extracting and Evaluating PNS Values

5 Results: Empirical Demonstration in LMs

» 1000 sets of exogenous variable values sampled per quantity of interest.

+ One factual, one counterfactual problem per set. Five answers sampled per problem.
» Responses converted to booleans using Llama 3 8B.

« Approximation errors: relative absolute errors (RAE).

| PNS*. — PNS. |

| PNS- — PNS. |
PNS*. ’ ’

RAEeyiemal = PTV\S

RAEinternal =

+ Externally valid: > 90% of estimates with RAE < 0.1.
* Near-valid: > 75% of estimates with RAE < 0.1.
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Remark

5 Results: Empirical Demonstration in LMs

Remark 1

Success on CCR tasks is necessary but not sufficient for demonstrating
that language models can reason.
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Results: Taxonomy of Reasoners

5 Results: Empirical Demonstration in LMs

‘& v T adh

WETTTIENRES  i—.
050 m a

0.254

ﬁlc

0.0 05 10 1’5
External validity RAE
~-Phi-3 MILlama2 © Llama3 ALlama3.l ALlama3.1 CoT ¢ Llama3.I Math ~ Llama3.1 Math CoT J¥GPT-4o ~ GPT-40 CoT Xol X ol CoT

Internal consistency RAE

Figure 5. Composition RAE with respect to ground truth (external validity) and PNS xy (internal consistency). Dotted lines represent the
error threshold (RAE = 0.1), with reasoning quadrants VI/IC in yellow, VC in green, and II in white. Models are listed by increasing size
(Table F.1). External validity RAE is truncated; for the full distribution, see Fig. F.6.
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Visualizing Reasoning with CCTs

5 Results: Empirical Demonstration in LMs

hog
r\ h
gOf
hogof
A. LLAMA 3.1 MATH B. GPT-40 c. ol
hOg
J; /g \
E— —
CN
hogof
D. LLAMA 3.1 MATH COT E. GPT-40 COT F. 01 coT
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Errors Increase With Mediation

5 Results: Empirical Demonstration in LMs

~+-Phi-3  ALlama 3.1 Llama 3.1 Math CoT Xol
15 MLlama2 ALlama3.1 CoT ¥GPT-40 Xol CoT
Llama 3 ¢ Llama 3.1 Math = GPT-40 CoT

101

Mean RAE

o X

0 1 2 3 4

3 5
Total mediators between cause and effect
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Limitations & Future Directions

6 Limitations & Future Directions

« Limited to one illustrative task as proof of viability.

» Future work: automated task design for large-scale benchmarking.

» Only considers the ATE and PNS under Theorem 1. Extensions could
consider other estimands and compositional forms.
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Thank you! Any questions?

maasch@cs.cornell.edu
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A Noncausal Example for Intuition

GROUND TRUTH A*: THE COST OF PATH A — C'15 3.5

@—1.52.0—)@

FORM l: GLOBAL QUERY FORM 2: COMPOSITION

Q1l: what is the cost Q2: wWhat is the sum

of path A = C?
/ A — B and B — C?

of costs for paths

pr i

Al: 3.5 | | |a2: 3.5
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Inductive CCR in Graphs with Cutpoints

Algorithm 1 Inductive CCR evaluation in causal graphs

with cutpoints

Input: CCT Cxy; estimates {¢-}, true values {(*-} for
(p, M, Q); metric 0 (e.g., relative absolute error)

Output: Reasoning errors 7, €,y

Assumptions: ¢ composes according to an associative
function over the BCCs of causal graph Gxy.

Compute quantity-wise errors.

1: forV pairs {Ri, Lj>i} in Cxy do

20 MR,L; < Q(WE,LJ' s @RzLJ ) D> External validity.
Compute inductive reasoning errors.

3: for V paths ¢ from X to Y in Cxy do

4:  Get composition @7 for path 7 from knowledge of

edges j € ¢
50 € 0(ky, BY) > External validity.
6: Yi < 0($XY7 @f) D Internal consistency.
return 7, €,y




ATE Composition Across BCCs

* Assume a linear SCM.
* Gx,y contains subgraph with two BCCs sharing cutpoint X5 (in , periwinkle).
+ If the dotted edge X; — X does not exist, ATEx,y = - ATEy.y.

» If X5 — Xg does exist, then product is summed with additional term corresponding to
the path-specific effect for X; — X5 — Xg — Y, which does not pass through X;.
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PNS
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PNS & ATE Composition Across BCCs
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Error Analysis

Prompt

Xinyu gets 4,
and Yasmin gets 3.

"After distributing the candies, Ara gets 6, Becca gets 5, Celine gets
Is Celine happy? Be

10, Daphne gets 1, Emma gets 1, Fox gets 4,
as concise as possible."

Response

She wants at least 7 candies but got only 10."

"No, Celine is not happy.

Figure F.3. Factual question and answer from Llama 2, displaying incorrect numerical reasoning.
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Error Analysis

P

rompt

"Now, suppose that Xinyu is happy regardless of the candy distribution. With this
assumption, is Celine happy? Be as concise as possible.”

Response

"Under the assumption that Xinyu is happy regardless of the candy distribution,
Celine is not happy.

Reason: Since Xinyu is happy regardless of the candy distribution, it means that
she got at least 7 candies. However, Celine only got 10 candies, which is less than
7. Therefore, Celine is not happy."

Figure F4. Counterfactual question and answer from Llama 2, displaying incorrect numerical reasoning.
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Error Analysis

Prompt
"After distributing the candies, Xinyu gets 10, Ara gets 6, Becca gets 7, Celine
gets 6, Daphne gets 1, Emma gets 10, Fox gets 10, and Yasmin gets 2. Is Daphne
happy? Be as concise as possible."

Response

"Daphne will be happy if Celine is happy or if she gets at least 7 candies. Since
Daphne gets less than 7 candies (1), she won’t be happy based on the candies she
gets. Celine gets 6 candies, which is less than 7. Since neither of Daphne’s
conditions is met, Daphne is not happy."

Figure E5. A case where Llama 3.1 failed to follow the full chain of logic. The correct line of logic is as follows: Daphne will be happy if
Celine is happy or if she gets at least 7 candies. Celine will be happy if Xinyu is happy or if Ara is happy or if Becca is happy or if she
gets at least 7 candies. Xinyu will be happy if she gets at least 7 candies. Since Xinyu received 10 candies, she is happy, and so should be
Celine. Thus, Daphne should also be happy.
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