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Presentation Overview
1 Background

1. Background.

2. Conceptual Framework:

— Compositional Causal Reasoning (CCR).
— Compositional Consistency Evaluation.

3. Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints.

4. Results: Empirical Demonstration in Language Models.
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Background
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Reasoning in AI
1 Background

• What is reasoning?

— Process of applying logic to draw valid conclusions from new or prior information,
with the aim of seeking truth (Wikipedia).

— Activity of forming new beliefs based on existing beliefs and new evidence.
— Bayesian inference: P(H | E) = P(E|H)P(H)

P(E) , where H is hypothesis and E is evidence.
— Etc.

• Many forms: quantitative, logical, visual, spatial, moral, legal, etc.

• We consider two forms in tandem: causal reasoning and compositional reasoning.
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Reasoning in AI: Two Issues
1 Background

Increase reasoning capacities: Principled evaluation frameworks:
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Causal Reasoning
1 Background

• Causal reasoning is a defining outcome of human evolution [1].

• Enables humans and machines to learn generalizable lessons about the mechanics
of the universe [2].

• Human-like AI might require reasoning at all 3 levels of Pearl’s Causal Hierarchy [3]:
1. Associational.
2. Interventional.
3. Counterfactual.
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Compositional Reasoning
1 Background

• Human-like AI might also require compositional reasoning [4]: the capacity to rec-
ognize and synthesize novel combinations of previously observed concepts [5].

• Compositionality is ubiquitous in the physical world, symbolic systems, human cognition
[6], visual perception [7], and language [8].

• It is a means of generalization and of coping with complexity.
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Compositionality is Ubiquitous
1 Background
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Compositionality + Causality
1 Background

A mathematical language for evaluating compositional + causal reasoning simultaneously:

• Graphical modeling. Expressive representations for joint distributions, their factors,
and the propagation of quantities through systems [9, 10, 11].

• Causal inference. Causal effect decomposition plays a central role in:

— Mediation analysis [12, 13].
— Fairness analysis [14].
— Covariate adjustment in the presence of latent variables [15, 16].
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Contributions
2 Our Work

1. A compositional view of causal reasoning in LMs. The ability to infer causal mea-
sure compositions (inductive reasoning) and decompositions (deductive reasoning).

2. Metrics and reasoning taxonomy. Four categories of reasoners.

3. An evaluation framework. For inductive CCR in causal graphs with cutpoints.

4. Preliminary empirical demonstration. Evaluated CCR in seven LMs, with and with-
out chain-of-thought (CoT) prompting.
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Results Teaser
2 Our Work

• A simple CCR task revealed taxonomically distinct error patterns.
• Only o1 was fully correct on this task.
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Framework: Compositional Causal Reasoning Evaluation
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Preliminaries: Causal Models
3 Framework: Compositional Causal Reasoning Evaluation

Definition 1: Structural causal model (SCM) [17]

An SCM is a tuple M := ⟨V,U,F , p(u)⟩:

• U = {Ui}ni=1 are exogenous variables determined by factors outside M;
• V = {Vi}ni=1 are observed endogenous variables determined by variables in U ∪ V;
• F = {fi}ni=1 are structural functions such that vi = fi(pavi , ui);
• p(u) is the distribution over U.
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Preliminaries: Causal Measures
3 Framework: Compositional Causal Reasoning Evaluation

Definition 2: Average treatment effect (ATE)

Let X denote a binary treatment variable and Y an outcome. We express the ATE as the
following difference of expectations:

ATE := E[Y | do(X = 1)]− E[Y | do(X = 0)]. (1)
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Preliminaries: Causal Measures
3 Framework: Compositional Causal Reasoning Evaluation

In propositional logic, we say that

1. X is necessary for Y when Y ⇒ X.
2. X is sufficient for Y when X ⇒ Y.
3. X is necessary and sufficient for Y when X ⇐⇒ Y.

Pearl [18] introduced a probabilistic framework, the probabilities of causation (PrC):

1. Probability of necessity (PN).
2. Probability of sufficiency (PS).
3. Probability of necessity and sufficiency (PNS).
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Preliminaries: Causal Measures
3 Framework: Compositional Causal Reasoning Evaluation

Definition 3: Probability of necessity and sufficiency (PNS) [18]

Let X and Y denote binary random variables, where X is a cause of Y.

Let x and y denote the propositions or events that X = TRUE and Y = TRUE, respectively,
while x′ and y′ denote that X = FALSE and Y = FALSE.

The probability that x is necessary and sufficient to produce y is given as

PNS := P(yx, y′x′) = P(x, y)PN+ P(x′, y′)PS. (2)
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Preliminaries: Causal Measures
3 Framework: Compositional Causal Reasoning Evaluation

Why use the PNS for reasoning evaluation?

1. Variables of interest are binary and probabilities are bounded by 0 and 1.

2. Easy to translate PrC queries to text prompts designed to elicit logical, mathematical,
probabilistic, and/or causal reasoning [19, 20].

3. The PNS and ATE coincide under certain conditions, and thus share convenient com-
positional properties.
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Compositional Causal Reasoning
3 Framework: Compositional Causal Reasoning Evaluation

Definition 4: Compositional Causal Reasoning (CCR)

The ability to infer compositions and decompositions of causal measures in factual
and counterfactual worlds.

Inductive CCR: Deductive CCR:

18/55



A Classic Example
3 Framework: Compositional Causal Reasoning Evaluation

Example 1: Decomposition of total causal effects in linear SCMs [17]

Let TE be the total effect, NDE the natural direct effect, and NIE the natural indirect effect.
When causal functions are linear,

TE︸︷︷︸
global

= NDE︸︷︷︸
local

+ NIE︸︷︷︸
local

. (3)

Z

X Y

b c

a

TEXY = a + bc
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Compositional Consistency Evaluation
3 Framework: Compositional Causal Reasoning Evaluation

Definition 5: Compositional consistency

Reasoning is compositionally consistent when theoretically equivalent com-
positions are assessed to be equal.
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Compositional Consistency Evaluation
3 Framework: Compositional Causal Reasoning Evaluation

Notation Meaning

M := ⟨V,U,F , p(u)⟩ An SCM representing the problem.
A A model (e.g., an LM).
Φ The set of all causal measures.
φ ∈ Φ A measure of interest (e.g., the ATE).
φx A causal query about the value of φ w.r.t. X ⊂ V.
φ∗
x The true value of φx.
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Compositional Consistency Evaluation
3 Framework: Compositional Causal Reasoning Evaluation

Each query is encoded as a question template

Qφx := (φx,S), (4)

where φx is implicit (i.e., not directly stated) and S is the surface form that expresses ac-
cessory details (e.g., the background of a math word problem) [21].

Qφx is expressed in a form comprehensible to A (e.g., text, image, etc.).
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Compositional Consistency Evaluation
3 Framework: Compositional Causal Reasoning Evaluation

Solutions to causal queries are obtained by

φ̂x := A(Qφx). (5)

Evaluation entails computing approximation errors of form

ϵφx := θ(φ∗
x, φ̂x) (6)

or similar, for some metric θ.
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Compositional Consistency Evaluation
3 Framework: Compositional Causal Reasoning Evaluation

Definition 6: External validity

Reasoning is externally valid when inferred quantities are equivalent to ground truth, up to
some error δ:

θ(φ∗
x, φ̂x) ≤ δ. (7)

In Example 1, this entails that the following are less than δ:

• θ(TE∗XY, T̂EXY)

• θ(TE∗XY, N̂DEXY + N̂IEXY)

• etc.
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Compositional Consistency Evaluation
3 Framework: Compositional Causal Reasoning Evaluation

Definition 7: Internal consistency

Reasoning is internally consistent when quantities that are theoretically equivalent are in-
ferred to be equivalent, up to some error δ:

φ∗
x = φ∗

x′ ⇒ θ(φ̂x, φ̂x′) ≤ δ. (8)

Note that inferred quantities are compared to each other, not to ground truth. In Example 1,
this entails that the following are less than δ:

• θ(T̂EXY, N̂DEXY + N̂IEXY)
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Taxonomy of Reasoners
3 Framework: Compositional Causal Reasoning Evaluation

Definition 8: Taxonomy of Reasoners

1. Valid-consistent (VC). 3. Invalid-consistent (IC).
2. Valid-inconsistent (VI). 4. Invalid-inconsistent (II).
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Algorithm:
Inductive CCR Evaluation in Graphs with Cutpoints
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Case Study: Graphs with Cutpoints
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

• A cutpoint is any node contained in multiple biconnected components (BCCs):
— Maximal biconnected subgraphs induced by a partition of edges. Two edges are

in the same partition if and only if they share a common simple cycle [22].
— E.g., the blue, pink, and maroon subgraphs.

• Removing a cutpoint disconnects the graph (e.g., nodes C,D).
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Assumptions: Graphs with Cutpoints
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

For simplicity, we consider causal DAGs satisfying the following:

A1 Only one root node X (i.e., the cause of interest).
A2 Only one leaf node Y (i.e., the effect of interest).
A3 At least one cutpoint.
A4 No unobserved confounders.
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PNS Composition Across BCCs
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

Theorem 1: PNS composition across BCCs

Given DAG GXY satisfying assumptions A1–A4 where Y is monotonic in X, the PNS for root
X and leaf Y composes as

PNSXY =
∏

{Ri,Li}∈C

PNSRiLi (9)

where C is the set of all BCCs in GXY and Ri,Li are the root and leaf of BCC Ci, respectively.
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Commutative Cut Trees
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

Definition 9: Commutative cut tree (CCT)

Let GXY be a causal graph satisfying A1–A4 and let φ be a causal measure that composes
according to an associative function over BCCs (e.g., multiplication as in Theorem 1).

CCT CXY is a transformation of GXY that models all CCR pathways from root X to leaf Y for
measure φ. CXY is obtained by a two-step transformation of GXY:

1. Construct a causal chain with nodes X ∪ S ∪ Y, where S is a topological ordering of the
cutpoints in GXY.

2. Add a directed edge between any non-adjacent nodes in the chain to yield a complete
graph where all directed paths point from root X to leaf Y.

31/55



Commutative Cut Trees
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints
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CCTs: A Useful Abstraction
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints

• Abstract away complexity in DAG by collapsing BCCs into single edges.

• Evaluate on complex DAGs with cutpoints as if they were simply directed chains.

• Simplify problem representation by (1) marginalizing out variables unnecessary for
valid causal inference and (2) visualizing pathways of composition.

• A design tool for formulating reasoning tasks.

• Interpretable, intuitive tool for graphically representing reasoning correctness.
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Running Example: Intuition for Algorithm 1
4 Algorithm: Inductive CCR Evaluation in Graphs with Cutpoints
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Results: Empirical Demonstration in LMs
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Models
5 Results: Empirical Demonstration in LMs
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Factual & Counterfactual Prompts
5 Results: Empirical Demonstration in LMs

• SCM M := ⟨V,U,F , p(u)⟩: V are binary, f ∈ F are logical or (∨), p(u) is Bernoulli.
• Logical or is a monotone boolean function.
• Each node in the DAG is a person in our word problem: X = Xinyu, A = Ara, B = Becca,
C = Celine, D = Daphne, E = Emma, F = Fox, Y = Yasmin.

vi = pa1,∨... ∨ pak ∨ Ber(0.7) (10)
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Factual & Counterfactual Prompts
5 Results: Empirical Demonstration in LMs

• P̂NSXC: Simulate potential outcomes X = TRUE, X = FALSE (Xinyu is or is not happy).
Query for value of C (Celine is or is not happy).

• P̂NSDY: Interventions on D (Daphne’s happiness), queries on Y (Yasmin’s happiness).
• CoT formulation: Demonstrated one factual and one counterfactual example.
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Extracting and Evaluating PNS Values
5 Results: Empirical Demonstration in LMs

• 1000 sets of exogenous variable values sampled per quantity of interest.
• One factual, one counterfactual problem per set. Five answers sampled per problem.
• Responses converted to booleans using Llama 3 8B.
• Approximation errors: relative absolute errors (RAE).

RAEexternal :=
| PNS∗· − P̂NS· |

PNS∗·
, RAEinternal :=

| P̂NS· − P̂NS·
′
|

P̂NS·
. (11)

• Externally valid: ≥ 90% of estimates with RAE ≤ 0.1.
• Near-valid: ≥ 75% of estimates with RAE ≤ 0.1.
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Remark
5 Results: Empirical Demonstration in LMs

Remark 1

Success on CCR tasks is necessary but not sufficient for demonstrating
that language models can reason.
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Results: Taxonomy of Reasoners
5 Results: Empirical Demonstration in LMs
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Visualizing Reasoning with CCTs
5 Results: Empirical Demonstration in LMs
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Errors Increase With Mediation
5 Results: Empirical Demonstration in LMs

43/55



Limitations & Future Directions
6 Limitations & Future Directions

• Limited to one illustrative task as proof of viability.

• Future work: automated task design for large-scale benchmarking.

• Only considers the ATE and PNS under Theorem 1. Extensions could
consider other estimands and compositional forms.
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Thank you! Any questions?
maasch@cs.cornell.edu
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A Noncausal Example for Intuition
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Inductive CCR in Graphs with Cutpoints
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ATE Composition Across BCCs

• Assume a linear SCM.
• GX1Y contains subgraph with two BCCs sharing cutpoint X3 (in orange, periwinkle).
• If the dotted edge X5 → X6 does not exist, ATEX1Y = ATEX1X3 · ATEX3Y.
• If X5 → X6 does exist, then product is summed with additional term corresponding to

the path-specific effect for X1 → X5 → X6 → Y, which does not pass through X3.
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PNS & ATE Composition Across BCCs
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Error Analysis
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Error Analysis
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Error Analysis
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