

Local Causal Discovery for Structural Evidence of Direct Discrimination

Jacqueline Maasch maasch@cs.cornell.edu|arXiv:2405.14848

Joint work by: J Maasch,¹ K Gan,¹ V Chen,² A Orfanoudaki,³ N Akpinar,⁴ F Wang,⁵ ¹Cornell Tech, ²Stevens Institute of Technology, ³University of Oxford, ⁴Amazon AWS, ⁵Weill Cornell

2024 INFORMS Annual Meeting | Seattle, WA | 21 October 2024

Presentation overview 1 Background

- 1. What is causal fairness analysis?
- 2. How can we detect direct discrimination?
- 3. A new causal discovery method for practical use.
- 4. Real-world fairness analysis on clinical data.

Fairness with respect to protected attributes 1 Background

- Fairness is essential in policy design and algorithmic decision-making.
- Under the law, mechanism matters:
 - 1. Direct discrimination.
 - 2. Indirect unfairness.
 - 3. Spurious unfairness (common cause).
- **Problem**: Statistical associations cannot disentangle mechanisms.
- Solution: Causal inference can (*with prior knowledge*).

Case study: Is liver transplant allocation fair? 1 Background

Liver transplantation is a critical therapeutic for acute liver failure.

Sex-based disparities have been observed.^{1,2}

Case study: Is liver transplant allocation fair? 1 Background

Fairness query: Are sex-based disparities in liver allocation due to direct discrimination? **Graphical query:** Is patient sex (S) a causal parent of liver allocation (L)?

Sex is a **parent** (direct cause)

Sex is an **ancestor** (indirect cause)

Common cause (spurious)

Causal Fairness Analysis (CFA) 1 Background

A theoretical framework for disentanglement in the language of **structural causal models** (SCMs) and **graphical modeling**.

Graphical signatures of direct discrimination 1 Background

- 1. Structural direct criterion (SDC).³
- 2. Direct effect estimation.
 - Controlled direct effect.⁴
 - Natural direct effect.⁴
 - Counterfactual direct effect.⁵

DIRECT

Structural direct criterion (SDC) 1 Background

Detecting direct discrimination == causal parent discovery.³

$$SDC = \begin{cases} 1 & \text{if } X \text{ is a parent of } Y, \\ 0 & \text{if } X \text{ is not a parent of } Y. \end{cases}$$

DIRECT

Weighted Controlled Direct Effect (WCDE) 1 Background

- WCDE: Expected change in outcome as the exposure changes, adjusting for mediators M (blocking indirect effects).
- For potential cause X, outcome Y, mediators M, and covariates S,

$$WCDE = \sum_{\mathbf{m}} \sum_{\mathbf{s}} \left[\mathbb{E}[Y|x, \mathbf{s}, \mathbf{m}] - \mathbb{E}[Y|x^*, \mathbf{s}, \mathbf{m}] \right] P(\mathbf{m}) P(\mathbf{s}).$$
(1)

WCDE is nonzero if and only if *X* is a parent of *Y*.

What if the graph is unknown? 1 Background

We can learn it from observational data via causal discovery.

- Prior methods pose limitations:
 - Disagreement with expert knowledge.6,7
 - High sample and time complexity.
 - Conflicting fairness conclusions.⁸
- What if we tailor discovery to CFA for direct discrimination?

LD3: Contributions

2 Local Discovery for Direct Discrimination (LD3)

• Parent discovery.

- Linear no. of conditional independence tests w.r.t. total input variables.

Addresses both indicators of direct discrimination.

- 1. SDC.³ 2. WCDE.⁴
- **Z. WODE**.

Real-world fairness analysis.

- LD3 recovered known relations more effectively than baselines.

• **Goal**: Learn the relationship of each variable to the protected attribute and outcome to identify parents of outcome.

- Any variable can take on exactly one of eight causal roles (labels) w.r.t. a cause-effect pair of interest, as shown in Maasch et al. (UAI'24).⁹
- Local discovery: We learn these labels, and abstract away the rest.

Learn labels, not the global graph 2 Local Discovery for Direct Discrimination (LD3)

Does the red edge exist? Finding other parents of *Y* can tell us.

(A) Unknown graph of input data. (B) WCDE adjustment set returned by LD3.

LD3: faster, fewer tests, better parent recall

2 Local Discovery for Direct Discrimination (LD3)

Benchmark: Linear-Gaussian model of grape production¹⁰ from bnlearn.¹¹ **Baselines:** On all datasets, $11-1021 \times$ more tests and $46-5870 \times$ more time.

Is liver allocation fair?

3 Real-world causal fairness analysis: Is liver allocation fair?

- · Fairness query: Are sex-based disparities due to direct discrimination?
- Graphical query: Is patient sex a causal parent of liver allocation?
- Data: Ntl. Standard Transplant Analysis and Research (STAR), 2017-2019.12
- **Sample size:** n = 21, 101 (36% female).

LD3 detects known relations

3 Real-world causal fairness analysis: Is liver allocation fair?

SDC = 1, **WCDE** \neq 0: All methods detect sex (*S*) as a parent of liver allocation (*L*).¹ **Known parents:** MELD score (*IM*), age (*IA*), region (*RE*), active exception case (*AE*).

¹Same independence test, same significance level.

Thank you! Any questions?

maasch@cs.cornell.edu

arXiv:2405.14848

jmaasch.github.io

References

- O. O. Oloruntoba et al. "Gender-based disparities in access to and outcomes of liver transplantation". In: World journal of hepatology 7.3 (2015), p. 460.
- [2] A. M. Allen et al. "Reduced access to liver transplantation in women: role of height, MELD exception scores, and renal function underestimation". In: *Transplantation* 102.10 (2018), pp. 1710–1716.
- [3] D. Plečko et al. "Causal Fairness Analysis: A Causal Toolkit for Fair Machine Learning". In: Foundations and Trends® in Machine Learning 17.3 (2024), pp. 304–589.
- [4] J. Pearl. "Direct and Indirect Effects". In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence. 2001.
- [5] J. Zhang et al. "Fairness in Decision-Making The Causal Explanation Formula". In: Proceedings of the AAAI Conference on Artificial Intelligence 32.1 (2018). DOI: 10.1609/aaai.v32i1.11564.
- [6] X. Shen et al. "Challenges and Opportunities with Causal Discovery Algorithms: Application to Alzheimer' s Pathophysiology". In: Scientific Reports 10.2975 (2020).
- [7] A. H. Petersen et al. "Constructing Causal Life-Course Models: Comparative Study of Data-Driven and Theory-Driven Approaches". In: American Journal of Epidemiology 192.11 (2023), pp. 1917–1927.
- [8] R. Binkytė et al. "Causal discovery for fairness". In: Workshop on Algorithmic Fairness through the Lens of Causality and Privacy. PMLR. 2023, pp. 7–22.

- [9] J. Maasch et al. "Local Discovery by Partitioning: Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs". In: Proceedings of the 40th Conference on Uncertainy in Artificial Intelligence. 2024. DOI: https://doi.org/10.48550/ arXiv.2310.17816.
- [10] A. Magrini et al. "A conditional linear Gaussian network to assess the impact of several agronomic settings on the quality of Tuscan Sangiovese grapes". In: *Biometrical Letters* 54.1 (2017), pp. 25–42.
- [11] M. Scutari. Learning Bayesian Networks with the bnlearn R Package. en. arXiv:0908.3817 [stat]. 2010.
- [12] OPTN. Data Request Instructions. Accessed: 2024-05-20. 2024.

Causal partitions

EXHAUSTIVE, DISJOINT CAUSAL PARTITIONS W.R.T. $\{X, Y\}$

- \mathbf{Z}_1 Confounders and their proxies.
- \mathbf{Z}_2 Colliders and their proxies.
- \mathbf{Z}_3 Mediators and their proxies.
- \mathbf{Z}_4 Non-descendants of Y where $\mathbf{Z}_4 \perp \!\!\!\perp X$ and $\mathbf{Z}_4 \not\!\!\!\perp X | Y$.
- \mathbf{Z}_5 Instruments and their proxies.
- \mathbf{Z}_6 Descendants of Y. All active paths with X are mediated by Y.
- \mathbf{Z}_7 Descendants of X. All active paths with Y are mediated by X.
- \mathbf{Z}_8 Nodes that share no active paths with X nor Y.

1. *Y* has no descendants in the observed variable set. This is satisfied when *Y* is a terminal variable in the temporal ordering (e.g., outcome is death, or a policy or algorithmic decision made at a known time point).

2. All parents of *Y* are observed. Latent variables that are not parents of *Y* are permissible. Thus, this is a milder condition than assuming causal sufficiency.

Pseudocode

Algorithm 1: LD3: Learning structural evidence of direct discrimination from observational data.

Input: Exposure X, outcome Y, variable set Z, independence test, significance level α.
Output: Adjustment set A_{DE}, SDC results.
Assumptions: Sufficient conditions A1 and A2.

1: $\mathbf{Z}' \leftarrow \mathbf{Z}$ 2. for $\forall Z \in \mathbf{Z}'$ do 3: if $Z \perp X \land Z \perp Y$ then $Z \in \widehat{\mathbf{Z}}_8$ 4: if $Z \not\perp Y \land Z \perp Y \mid X$ then $Z \in \widehat{\mathbf{Z}}_{5,7}$ 5: if $Z \perp X \land Z \not\perp X | Y$ then $Z \in \widehat{\mathbf{Z}}_4$ 6: $\mathbf{Z}' \leftarrow \mathbf{Z}' \setminus \widehat{\mathbf{Z}}_8 \cup \widehat{\mathbf{Z}}_{5,7} \cup \widehat{\mathbf{Z}}_4$ 7: for $\forall Z \in \mathbf{Z}'$ do 8: if $Z \not\perp Y | X \cup \widehat{\mathbf{Z}}_4 \cup \{ \mathbf{Z}' \setminus Z \}$ then $Z \in \widehat{\mathbf{Z}}_{1 \in ng(Y)} \cup$ $\widehat{\mathbf{Z}}_{3\in pa(Y)}$ 9: for $\forall \widehat{Z}_A \in \widehat{\mathbf{Z}}_A$ do 10: **if** $\widehat{Z}_4 \not \perp Y | X \cup \widehat{Z}_{1 \in pa(Y)} \cup \widehat{Z}_{3 \in pa(Y)} \cup \{\widehat{Z}_4 \setminus \widehat{Z}_4\}$ then $\hat{Z}_4 \in \hat{\mathbf{Z}}_{4 \in pa(Y)}$ 11: $\mathbf{A}_{\mathrm{DE}} \leftarrow \hat{\mathbf{Z}}_{1 \in pa(Y)} \cup \hat{\mathbf{Z}}_{3 \in pa(Y)} \cup \hat{\mathbf{Z}}_{4 \in pa(Y)}$ 12: if $X \perp Y | \widehat{\mathbf{Z}}_{1 \in pa(Y)} \cup \widehat{\mathbf{Z}}_{3 \in pa(Y)}$ then $SDC \leftarrow 0$ 13: else $SDC \leftarrow 1$ 14: return A_{DE}, SDC

STAR liver data

- 1. Sex (exposure, protected attribute): Recipient sex.
- 2. Liver allocation (outcome): Did the candidate receive a liver transplant?
- 3. Recipient blood type: Recipient blood group at registration.
- 4. Initial age: Age in years at time of listing.
- 5. Ethnicity: Recipient ethnicity category.
- 6. Hispanic/Latino: Is the recipient Hispanic/Latino?
- 7. Education: Recipient highest educational level at registration.
- 8. Initial MELD: Initial waiting list MELD/PELD lab score.
- 9. Active exception case: Was this an active exception case?
- 10. Exception type: Type of exception relative to hepatocellular carcinoma (HCC).
- 11. Diagnosis: Primary diagnosis at time of listing.
- 12. Initial status: Initial waiting list status code.
- 13. Number of previous transplants: Number of prior transplants that the recipient received.
- 14. Weight: Recipient weight (kg) at registration.
- 15. Height: Recipient height at registration.
- 16. BMI: Recipient body mass index (BMI) at listing.
- 17. Payment method: Recipient primary projected payment type at registration.
- 18. Region: Waitlist UNOS/OPTN region where recipient was listed or transplanted.

STAR liver data

	UNOS POLICY (2017-2019)				
	<i>Female</i> $(n = 7679)$	<i>Male</i> $(n = 13422)$	p-value	Test	
Active exception case	0.36 (0.73)	0.48 (0.83)	7.241e-28	t-test	
Diagnosis 1 (PSC: Primary Sclerosing Cholangitis)	0.03 (0.18)	0.04 (0.2)	0.037	χ^2	
Diagnosis 6 (AHF: acute hepatic failure)	0.06 (0.23)	0.02 (0.15)	0.004	χ^2	
Diagnosis 7 (Cancer)	0.09 (0.28)	0.16 (0.37)	0.010	χ^2	
Height	161.9 (7.46)	175.91 (8.51)	0.000	t-test	
Initial MELD	20.5 (10.21)	18.83 (9.87)	1.588e-31	t-test	
Payment method	0.53 (0.5)	0.54 (0.5)	0.012	χ^2	
Recipient age	54.46 (12.42)	56.03 (10.74)	4.091e-22	t-test	
Weight	75.97 (18.53)	90.63 (19.59)	0.000	t-test	
	UNOS POLICY (2020-2022)				
	<i>Female</i> $(n = 8574)$	<i>Male</i> $(n = 14233)$	p-value	Test	
Active exception case	0.39 (0.58)	0.43 (0.63)	3.629e-07	t-test	
Ethnicity 9 (Multiracial, non-hispanic)	0.01 (0.08)	0.0 (0.07)	0.022	Fisher's exact	
Exception type 1 (Unknown)	0.29 (0.45)	0.28 (0.45)	0.022	χ^2	
Height	161.96 (7.8)	176.36 (8.25)	0.000	t-test	
Initial MELD	22.13 (10.52)	20.99 (10.48)	1.862e-15	t-test	
Initial status	0.04 (0.2)	0.02 (0.12)	2.858e-31	t-test	
Recipient age	53.83 (12.75)	54.74 (11.64)	3.059e-08	t-test	
Weight	75.76 (18.71)	91.1 (20.32)	0.000	t-test	

Table D.6: Mean values (standard deviations) for features with statistically significant differences between males and females ($\alpha = 0.05$). Summary statistics for all features are available on GitHub (https://anonymous.4open.science/r/LD3-4440).

Reduces unnecessary adjustment

	All \mathbf{Z} True \mathbf{A}_{DE}		Pred \mathbf{A}_{DE}				
n	Mean	Variance	Mean	Variance	Mean	Variance	$\mathbf{A}_{\mathrm{DE}} FI$
500	0.239	0.052	0.347	0.004	0.344	0.004	0.99 [0.98,1.0]
1000	-0.011	0.038	0.35	0.003	0.349	0.003	0.99 [0.98,1.0]
10000	0.151	0.013	0.345	0.000	0.344	0.000	0.99 [0.98,1.0]

Figure C.5: The true \mathbf{A}_{DE} for X and Y is in gray.

COMPAS results

Figure D.2: Average number of independence tests performed and average time (seconds) per method on COMPAS experiments.