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ABSTRACT

• Constraint-based causal discovery for covariate selection: Given an exposure-outcome pair

{X, Y } and a variable set Z of unknown causal structure, the Local Discovery by Partitioning
(LDP) algorithm partitions Z into subsets defined by their relation to {X, Y }.

• Differentiating confounders from other variables: We enumerate eight exhaustive and mutually

exclusive partitions of arbitrary Z and leverage this taxonomy for discovery.

• No pretreatment assumption: LDP does not assume that inputs causally precede the exposure,

unlike most methods for automated covariate selection.

• Asymptotic theoretical guarantees: LDP returns a valid adjustment set for any Z under sufficient

graphical conditions. Partition labels are asymptotically correct under stronger conditions.

• Polynomial runtimes: Total independence tests is worst-case quadratic in |Z|, significantly out-

performing constraint-based baselines in experiments.

• Less biased effect estimation: Adjustment sets from LDP yield less biased and more precise

average treatment effect (ATE) estimates than baselines.

BACKGROUND

• Covariate selection is a central task in the design of observational studies.

• The primary goal of covariate selection is to obtain a valid adjustment set for an exposure-outcome

pair that eliminates confounding bias by adjusting for confounders [1].

• Data-driven approaches can automate the principled selection of covariates, but these often impose

strong graphical assumptions that require prior knowledge (e.g., the pretreatment assumption).

• In the absence of prior knowledge, does there exist a polynomial-time algorithm that can select co-
variates in a principled, automated, and causality-based manner with guarantees on correctness?

PARTITIONS OF Z

This work presents three main theoretical results: 1) the existence of eight exhaustive and mutually

exclusive partitions that define any arbitrary Z (Theorem 1); 2) LDP yields asymptotically correct

partitions of Z under sufficient conditions (Theorem 2); and 3) LDP returns valid adjustment sets

under weakened sufficient conditions (Theorem 3).

Theorem 1. Any Z can be partitioned into eight mutually exclusive subsets (of cardinality greater
than or equal to zero) defined solely by their relation to exposure X and outcome Y . Thus, each
Z 2 Z uniquely belongs to a single partition defined below.

Exhaustive and Mutually Exclusive Partitions of Arbitrary Z

Z1 Confounders: Non-descendants of X that lie on an active backdoor path between X and Y .

Z2 Colliders: Non-ancestors of {X, Y } with at least one active path to X not mediated by Y and

at least one active path to Y not mediated by X .

Z3 Mediators: Descendants of X that are ancestors of Y .

Z4 Non-descendants of Y that are marginally dependent on Y but marginally independent of X .

Z5 Instruments: Non-descendants of X whose causal effect on Y is fully mediated by X , and

that share no confounders with Y .

Z6 Descendants of Y where all active paths shared with X are mediated by Y .

Z7 Descendants of X where all active paths shared with Y are mediated by X .

Z8 All nodes that share no active paths with X nor Y .

LOCAL DISCOVERY BY PARTITIONING (LDP)

Figure 1: Each step of LDP reveals information about the partitions of Z. The exposure-outcome pair {X, Y } serves as

a nucleus around which LDP assembles a partial causal graph. Here, each node represents a set corresponding to a single

partition of Z, indirect active paths are reduced to length-1 edges, and inter-partition paths are abstracted away.

Sufficient Conditions for Partition Accuracy
C1 The absence of inter-partition active paths that are not fully mediated by {X, Y }.

C2 The existence of at least one Z4. Given Condition C1, all Z2 (if any exist) will be marginally

dependent on such a Z4 and will be identifiable by LDP. This in turn guarantees that all backdoor

paths will be blocked by the conditioning set in Step 5 of LDP, which is used to discover Z5.

C3 Every Z1 forms a v-structure at X with at least one other variable Z 2 Z (Z · · ·! X  · · ·Z1)

such that Z ?? Z1 ^ Z 6?? Z1|X . By definition, variable Z can be either in Z5 or Z1. Given C1,

Z5 shares no active paths with Z1 and thus all of Z1 is marginally independent of Z5. If |Z5| = 0,

the existence of at least two non-overlapping backdoor paths satisfies this condition.

C4 Causal sufficiency in Z.

Theorem 2 (Correctness of LDP). Given {X, Y,Z}, an independence oracle, and Conditions C1-
C4, LDP is guaranteed to output a correct partition of Z that represents the local subgraph sur-
rounding {X, Y }, where each Z 2 Z is defined solely by its relation to {X, Y }.

Theorem 3 (LDP returns valid adjustment sets). Given {X, Y,Z}, an independence oracle, and Con-
ditions C2-C4, LDP is guaranteed to return a valid adjustment set.

Definition 4 (Valid adjustment under the backdoor criterion, [2]). Let AXY be an adjustment set for

{X, Y } that does not contain {X, Y }. AXY is valid if 1) AXY contains no descendants of X and 2)

AXY blocks all backdoor paths from X to Y .

Figure 2: ATE estimation using adjustment sets produced by each baseline for a linear-Gaussian 10-node DAG (Fig.

1). Independence was determined by Fisher-z tests (↵ = 0.01). Results are for 100 replicates per sample size with 95%

confidence intervals in shaded regions.

Figure 3: Total tests performed per Z under

an independence oracle (top) and mean run-

time over 100 replicates (bottom) as the car-

dinality of Z increases, with 95% confidence

intervals in shaded regions. Each DAG re-

sembles Figure 1 with equal cardinality per

partition ([1, 10]).

Figure 4: Partition accuracy over 100 repli-

cates of the 10-node DAG (Figure 1), with

95% confidence intervals in shaded regions.

Independence was determined by chi-square

tests for discrete data and Fisher-z for con-

tinuous data (↵ = 0.001).

EMPIRICAL RESULTS

Baseline Methods
1. PC Algorithm (PC), a classic global structure inference

algorithm with asymptotic theoretical guarantees [3].

2. MB-by-MB, a local Markov blanket learner that infers the

local structure around a target node to distinguish parents

from children [4].

3. Local Discovery using Eager Collider Checks
(LDECC), a local discovery algorithm that leverages un-

shielded colliders to differentiate the parents of a target

from its children [5].

LDP Accurately Partitions Z We measure partition ac-

curacy as the percent of partition labels that are consistent

with ground truth. LDP correctly partitions Z for the 10-

node DAG (Fig. 1) under continuous, discrete, linear, and

nonlinear data generating processes (Fig. 4).

LDP Enables Less Biased ATE Estimation The ATE

was estimated using linear regression for linear-Gaussian

10-node DAGs with a true total effect of 3.75 (Fig. 2).

LDP returned the highest quality adjustment sets in terms

of ATE mean squared error (MSE), confounder recall, and

percent valid. LDP generally produced the least biased

ATE estimates and lowest ATE variance, and was the only

method to achieve unbiased estimates under the disjunc-

tive cause criterion. Rising MSE for PC may be explained

by the cardinality of AXY increasing with sample size.
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