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Causal inference with observational data
1 Background

1. Identify the causal quantity of interest.

— Example: Average treatment effect (ATE) of a drug on a disease state.
— A graphical model of the data generating process (DGP) enables identifiability.
— We can learn this model with data-driven methods.

2. Perform inference to estimate this quantity.

— Express the parameter as a function of the DGP.
— Apply estimation methods (e.g., TMLE, doubly robust ML, etc.).
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Graphical models for causal effect identification
1 Background

Blocking all backdoor paths for {X, Y} by adjusting for confounder Z allows for
unconfoundedness or conditional exchangeability: Y(1), Y(0) ⊥⊥ X | Z.

This removes noncausal association for unbiased ATE estimation.
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Graphical models for causal effect identification
1 Background

The correct directed acyclic graph (DAG) enables unique identification of the true ATE:
E[Y(1)− Y(0)] = EZ

[
E[Y | X = 1, Z]− E[Y | X = 0, Z]

]
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Graphical models for causal effect identification
1 Background

Real-world example: diabetes risk

Whether the patient takes certain antipsychotics is a confounder
for BMI and risk of developing diabetes [ECM20].
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Effect estimation with a misspecified model
1 Background

ATE estimates converge to the true value when controlling for Z only (left),
but remain biased when controlling for {W, Z} (right).
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Causal discovery: learning structure from data
1 Background

• Data-driven: Learn the underlying graphical model, with or without prior knowledge.
• Global discovery: Learn the entire DAG from data.
• Local discovery: Learn only the relevant substructures (e.g., role of Z only).
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Failure modes of global discovery
1 Background

• Constraint-based methods PC and FCI [SGS00] use conditional independence tests
to identify the undirected skeleton of the graph and orient edges.

• Drawbacks: Exponential time complexity, high sample complexity, order dependence.
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Local Discovery by Partitioning (LDP)
2 Local Discovery by Partitioning (LDP)

To address these failure modes for the setting of downstream causal effect estimation:

1. We prove the existence of an exhaustive causal partition taxonomy defining any arbitrary DAG
w.r.t. the exposure and outcome.

2. We propose a local discovery procedure that learns causal partitions directly.

3. LDP is asymptotically guaranteed to return a confounder set for unbiased ATE estimation.
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Local causal partition learning
2 Local Discovery by Partitioning (LDP)

For downstream inference, we only care about the local structure relative to {X, Y}.
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Local causal partition learning
2 Local Discovery by Partitioning (LDP)

Universal property of DAGs: There exists a unique partitioning of the variables into eight
exhaustive, mutually exclusive subsets defined by their relation to {X, Y}.
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LDP learns causal partitions directly
2 Local Discovery by Partitioning (LDP)

Partition labels can be obtained with nonparametric or parametric independence tests.
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Fewer tests and faster runtimes
2 Local Discovery by Partitioning (LDP)

• Polynomial-time: Worst-case quadratic number of CI tests w.r.t. cardinality.
— Left: Local and global constraint-based baselines are worst-case exponential.
— Right: On a bnlearn benchmark (33 nodes), LDP ran 1400× to 2500× faster than PC.
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LDP for confounder discovery
2 Local Discovery by Partitioning (LDP)

Asymptotically guaranteed to return a valid adjustment set (VAS)
under latent confounding and mild graphical conditions.

{Z1,B1,B2,B3} is a VAS of confounders for {X, Y}:
1) Blocks all backdoor paths and 2) contains no descendants of X [PJS17].
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LDP for confounder discovery
2 Local Discovery by Partitioning (LDP)

• Sample efficient: Most conditioning sets of size one or two.
— Local and global baselines use larger conditioning set sizes, on average.
— LDP is more performant on small finite samples.
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LDP for precise and unbiased ATE estimation
2 Local Discovery by Partitioning (LDP)

Results on a 10-node linear-Gaussian DAG.
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Thank you! Any questions?

maasch@cs.cornell.edu

arXiv:2310.17816 jmaasch.github.io
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Causal Markov and faithfulness

https://www.bradyneal.com/causal-inference-course
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Preliminaries: Non-causal associations

X Y

Z
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Valid adjustment under the backdoor criterion

X Y

Z
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Why not adjust for everything?

• Bias: Multiple variable types can induce bias when retained for adjustment [Lu+21;
SCP09].

1. Colliders induce selection bias [HHR04; EW14; HA22].
2. Mediators bias total effects by controlling for indirect effects [Pea01].
3. Instruments can amplify existing bias or introduce new bias in some settings [Pea12].

• Variance: Unnecessary adjustment can inflate the variance of effect estimates [SCP09].

• Curse of dimensionality: Unnecessary adjustment can undermine model fitting [SLG16].
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Graphical models for causal effect identification

Real-world example: causal determinants of postoperative length of stay

Extubation in the operating room (extOR) is a confounder for the effect of reintubation
(reint) on postoperative length of stay (pLOS) after cardiac surgery [Lee+22].
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Sufficient conditions for identifiability

Sufficient conditions for VAS discovery are more relaxed than for correct
partitioning.
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LDP learns partitions directly

25/33



LDP learns partitions directly
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LDP partition correctness
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LDP partition correctness
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LDP partition correctness

LDP correctly partitions 98.7%[97.6, 99.9] of linear-Bernoulli instantiations and 98.7%[98.0, 99.4] of
quadratic hypergeometric instantiations of this DAG (100 replicates each, n = 20k).
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LDP partition correctness
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The MILDEW benchmark
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VAS discovery
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VAS with latent variables
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