

Local Discovery by Partitioning Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs

Jacqueline Maasch maasch@cs.cornell.edu|arXiv:2310.17816

Joint work by: J Maasch¹, W Pan², S Gupta³, V Kuleshov¹, K Gan⁴, F Wang²

¹Computer Science, Cornell Tech
²Population Health Sciences, Weill Cornell Medicine
³Machine Learning, Carnegie Mellon University
⁴Operations Research and Information Engineering, Cornell Tech

POMS Annual Conference | Minneapolis, MN | 27 April 2024

Causal inference with observational data 1 Background

1. Identify the causal quantity of interest.

- *Example:* Average treatment effect (ATE) of a drug on a disease state.
- A graphical model of the data generating process (DGP) enables identifiability.
- We can learn this model with data-driven methods.

2. Perform inference to estimate this quantity.

- Express the parameter as a function of the DGP.
- Apply estimation methods (e.g., TMLE, doubly robust ML, etc.).

Graphical models for causal effect identification 1 Background

Blocking all **backdoor paths** for $\{X, Y\}$ by adjusting for confounder Z allows for *unconfoundedness* or *conditional exchangeability*: $Y(1), Y(0) \perp X \mid Z$.

This removes *noncausal association* for unbiased ATE estimation.

The correct directed acyclic graph (DAG) enables unique identification of the true ATE:

 $\mathbb{E}[\mathbf{Y}(1) - \mathbf{Y}(0)] = \mathbb{E}_{\mathbf{Z}} \big[\mathbb{E}[\mathbf{Y} \mid \mathbf{X} = 1, \mathbf{Z}] - \mathbb{E}[\mathbf{Y} \mid \mathbf{X} = 0, \mathbf{Z}] \big]$

Whether the patient takes certain antipsychotics is a confounder for BMI and risk of developing diabetes [ECM20].

Effect estimation with a misspecified model 1 Background

ATE estimates converge to the true value when controlling for Z only (left), but remain biased when controlling for $\{W, Z\}$ (right).

- Data-driven: Learn the underlying graphical model, with or without prior knowledge.
- Global discovery: Learn the entire DAG from data.
- Local discovery: Learn only the relevant substructures (e.g., role of Z only).

Failure modes of global discovery

1 Background

- **Constraint-based methods PC and FCI** [SGS00] use conditional independence tests to identify the undirected skeleton of the graph and orient edges.
- Drawbacks: Exponential time complexity, high sample complexity, order dependence.

Local Discovery by Partitioning (LDP) 2 Local Discovery by Partitioning (LDP)

To address these failure modes for the setting of downstream causal effect estimation:

- 1. We prove the existence of an exhaustive **causal partition taxonomy** defining any arbitrary DAG w.r.t. the exposure and outcome.
- 2. We propose a local discovery procedure that learns causal partitions directly.
- 3. LDP is asymptotically guaranteed to return a confounder set for unbiased ATE estimation.

Local causal partition learning 2 Local Discovery by Partitioning (LDP)

For downstream inference, we only care about the **local structure** relative to $\{X, Y\}$.

Local causal partition learning 2 Local Discovery by Partitioning (LDP)

Universal property of DAGs: There exists a unique partitioning of the variables into eight exhaustive, mutually exclusive subsets defined by their relation to $\{X, Y\}$.

LDP learns causal partitions directly

2 Local Discovery by Partitioning (LDP)

Partition labels can be obtained with nonparametric or parametric independence tests.

Fewer tests and faster runtimes

2 Local Discovery by Partitioning (LDP)

- · Polynomial-time: Worst-case quadratic number of CI tests w.r.t. cardinality.
 - Left: Local and global constraint-based baselines are worst-case exponential.
 - *Right:* On a bnlearn benchmark (33 nodes), LDP ran $1400 \times$ to $2500 \times$ faster than PC.

LDP for confounder discovery

2 Local Discovery by Partitioning (LDP)

Asymptotically guaranteed to return a **valid adjustment set** (VAS) under **latent confounding** and mild graphical conditions.

 $\{Z_1, B_1, B_2, B_3\}$ is a VAS of confounders for $\{X, Y\}$: 1) Blocks all backdoor paths and 2) contains no descendants of *X* [PJS17].

LDP for confounder discovery

2 Local Discovery by Partitioning (LDP)

- Sample efficient: Most conditioning sets of size one or two.
 - Local and global baselines use larger conditioning set sizes, on average.
 - LDP is more performant on small finite samples.

LDP for precise and unbiased ATE estimation

2 Local Discovery by Partitioning (LDP)

Results on a 10-node linear-Gaussian DAG.

Thank you! Any questions?

maasch@cs.cornell.edu

arXiv:2310.17816

jmaasch.github.io

References

[ECM20]	M. Etminan et al. "Using causal diagrams to improve the design and interpretation of medical research". In: Chest 158.1 (2020), S21–S28.		
[SGS00]	P. Spirtes et al. Causation, Prediction, and Search. en. Ed. by J. Berger et al. Vol. 81. Lecture Notes in Statistics. New York, NY: Springer New York, 2000. doi: 10.1007/978-1-4612-2748-9.		
[PJS17]	J. Peters et al. Elements of causal inference: foundations and learning algorithms. Cambridge, Massachusetts: The MIT Press, 2017.		
[Lu+21]	H. Lu et al. "Revisiting Overadjustment Bias". en. In: Epidemiology 32.5 (2021), e22-e23. DOI: 10.1097/EDE.000000000001377.		
[SCP09]	E. F. Schisterman et al. "Overadjustment Bias and Unnecessary Adjustment in Epidemiologic Studies", en. In: Epidemiology 20.4 (2009), pp. 488–495. DOI: 10.1097/EDE.0b013e3181a819a1.		
[HHR04]	M. A. Hernán et al. "A Structural Approach to Selection Bias". en. In: Epidemiology 15.5 (2004), pp. 615–625. DOI: 10.1097/01.ede.0000135174.63482.43.		
[EW14]	F. Elwert et al. "Endogenous Selection Bias: The Problem of Conditioning on a Collider Variable". In: Annual Review of Sociology 40.1 (2014), pp. 31–53. bo 10.1146/annurev-soc-071913-043455.		
[HA22]	M. J. Holmberg et al. "Collider bias". In: JAMA Guide to Statistics and Methods 327.13 (2022).		
[Pea01]	J. Pearl. "Direct and Indirect Effects". In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence. 2001.		
[Pea12]	J. Pearl. "On a Class of Bias-Amplifying Variables that Endanger Effect Estimates". en. In: (2012).		
[SLG16]	M. E. Schnitzer et al. "Variable Selection for Confounder Control, Flexible Modeling and Collaborative Targeted Minimum Loss-Based Estimation in Causal Inference". In: <i>The International Journal of Biostatistics</i> 12.1 (2016), pp. 97–115. DOI: 10.1515/1jb-2015-0017.		
[Lee+22]	J. J. Lee et al. "Causal determinants of postoperative length of stay in cardiac surgery using causal graphical learning". In: The Journal of Thoracic and Cardiovascular Surgery (2022), S002252232200900X. poi: 10.1016/j.jtcvs.2022.08.012.		

Causal Markov and faithfulness

Faithfulness Assumption

Recall the Markov assumption: $X \perp\!\!\!\perp_G Y \mid Z \implies X \perp\!\!\!\perp_P Y \mid Z$

Causal graph \longrightarrow Data

Causal graph 🔶 Data

Faithfulness: $X \perp _G Y \mid Z \iff X \perp _P Y \mid Z$

https://www.bradyneal.com/causal-inference-course

Preliminaries: Non-causal associations

Definition 2.3 (Backdoor path, Pearl 2009). Any non-causal path between exposure X and outcome Y with an edge pointing into $X (\dots \rightarrow X)$.

Valid adjustment under the backdoor criterion

Definition 2.4 (Valid adjustment under the backdoor criterion, Peters et al. 2017). Let \mathbf{A}_{XY} be an adjustment set for $\{X, Y\}$ that does not contain $\{X, Y\}$. \mathbf{A}_{XY} is valid if

- 1. \mathbf{A}_{XY} contains no descendants of X and
- 2. \mathbf{A}_{XY} blocks all backdoor paths from X to Y.

Why not adjust for everything?

- Bias: Multiple variable types can induce bias when retained for adjustment [Lu+21; SCP09].
 - 1. Colliders induce selection bias [HHR04; EW14; HA22].
 - 2. Mediators bias total effects by controlling for indirect effects [Pea01].
 - 3. Instruments can amplify existing bias or introduce new bias in some settings [Pea12].
- Variance: Unnecessary adjustment can inflate the variance of effect estimates [SCP09].
- Curse of dimensionality: Unnecessary adjustment can undermine model fitting [SLG16].

Real-world example: causal determinants of postoperative length of stay

Extubation in the operating room (extOR) is a confounder for the effect of reintubation (reint) on postoperative length of stay (pLOS) after cardiac surgery [Lee+22].

Sufficient conditions for identifiability

Sufficient conditions for VAS discovery are more relaxed than for correct partitioning.

Sufficient Conditions for Correct Partitioning Given an independence oracle, we define *sufficient* (but not necessary) conditions for asymptotically correct partition labeling:

- C1 The absence of inter-partition active paths (Def. 3.2).
- C2 The existence of at least one Z_4 .
- C3 The existence of at least one Z_5 . Further, all \mathbf{Z}_1 are marginally independent of at least one observed Z_5 .
- C4 Causal sufficiency in \mathcal{G}_{XYZ} .

Sufficient Conditions for VAS Identification Per Definiton 2.4, a VAS 1) contains no descendants of X and 2) blocks all backdoor paths from X to Y. With Theorem 4.5, we show that the VAS returned by LDP (Partition Z_1) meets both criteria (Lemmas 4.2, 4.4) in the presence of causal insufficiency and arbitrary inter-partition active paths, given Condition C2, Condition C3, and a non-empty $Z_{5cadi(X)}$

LDP learns partitions directly

▷ STEP 6: SPLIT ZMIX BETWEEN Z1 5, Z7, ZPOST Algorithm 1 Local Discovery by Partitioning (LDP) 15: $\mathbf{Z}_{MIX} \leftarrow \mathbf{Z}_{MIX} \cup \mathbf{Z}_{5.7}$ **input** X, Y, Z, independence test, significance level α . 16: if $|\mathbf{Z}_{Mix}| > 0$ and $|\mathbf{Z}'| > 0$ then output Partitions of Z: Z1, Z4, Z5, Z7, Z8, ZPOST. for all $Z \in \mathbf{Z}'$ do 17: 18. if $\exists Z_{Mix} \in \mathbf{Z}_{Mix}$: $Z_{Mix} \perp Z$ and $Z_{Mix} \perp Z \mid X$ then 1: Copy $\mathbf{Z}' \leftarrow \mathbf{Z}$ $Z \in \mathbf{Z}_1, Z_{MIX} \in \mathbf{Z}_{1.5} \notin \mathbf{Z}_{MIX}$ 19: 2: for all $Z \in \mathbf{Z}'$ do 20: else $Z \in \mathbb{Z}_{POST}$ ▷ STEP 1: TEST FOR Z₈ for all $Z_{MIX} \in \mathbf{Z}_{MIX}$ do 21: 3: if $X \perp Z$ and $Y \perp Z$ then $Z \in \mathbb{Z}_{2}$ 22: if $\exists Z_{1,5}; Z_{1,5} \perp \perp Z_{Miv}$ then $Z_{Miv} \in \mathbb{Z}_1$ ▷ STEP 2: TEST FOR Z₄ 23: else $Z_{MIX} \in \mathbf{Z}_{POST}$ 4: else if $X \perp Z$ and $X \perp Z \mid Y$ then $Z \in \mathbb{Z}_4$ 24: if $|\mathbf{Z}_{1,5}| > 0$ then $\mathbf{Z}_7 \leftarrow \mathbf{Z}_{5,7}$ ▷ STEP 3: TEST FOR Zs 7 \triangleright STEP 7: FINALIZE **Z**₁ AND **Z**₅ 5: else if $Y \perp Z$ and $Y \perp Z \mid X$ then $Z \in \mathbb{Z}_{5,7}$ 25: if $|\mathbf{Z}_{1,5}| > 0$ and $|\mathbf{Z}_1| > 0$ then 6: $\mathbf{Z}' \leftarrow \mathbf{Z}' \setminus \mathbf{Z}_4 \cup \mathbf{Z}_{5,7} \cup \mathbf{Z}_8$ 26: for all $Z_{1,5} \in \mathbb{Z}_{1,5}$ do ▷ STEP 4: TEST FOR ZPOST 27: if $\exists Z_1 \in \mathbf{Z}_1$; $Z_{1,5} \not\sqcup Z_1$ then $Z_{1,5} \in \mathbf{Z}_1$ 7: if $|\mathbf{Z}_4| > 0$ then for all $Z \in \mathbf{Z}'$ do 28: else $Z_{1,5} \in \mathbb{Z}_5$ 8. if $\exists Z_4 : Z \not\models Z_4$ or $Z \not\models Z_4 \mid X \cup Y$ then $Z \in \mathbb{Z}_{\text{Post}}$ 29: if $|\mathbf{Z}_5| > 0$ then 9: 10: $\mathbf{Z}' \leftarrow \mathbf{Z}' \setminus \mathbf{Z}_{\text{POST}}$ 30: for $Z_5 \in \mathbb{Z}_5$ do ▷ STEP 5: TEST FOR ZM 31: if $Z_5 \not\sqcup X | \mathbf{Z}_5 \cup \mathbf{Z}_{POST} \setminus Z_5$ then 11: for all $Z \in \mathbf{Z}'$ do 32: $Z_5 \in \mathbb{Z}_{5 \in adi(X)}$ and \mathbb{Z}_1 is a VAS 12: if $Y \perp Z$ and $Y \perp Z \mid X \cup \mathbf{Z}' \setminus Z$ then 33: {not identifiable} $\leftarrow \mathbf{Z} \notin \mathbf{Z}_1, \mathbf{Z}_4, \mathbf{Z}_5, \mathbf{Z}_7, \mathbf{Z}_8, \mathbf{Z}_{POST}$ $Z \in \mathbb{Z}_{1,2,3,5} \in \mathbb{Z}_{Mix}$ 13: 34: return Partitions of Z and {not identifiable}. 14: $\mathbf{Z}' \leftarrow \mathbf{Z}' \setminus \mathbf{Z}_{MIX}$

LDP learns partitions directly

High-Level Overview Here, we describe the basic logic of Algorithm 1 in plain English.

- Step 1 \mathbb{Z}_8 discovered with knowledge of $\{X, Y, Z\}$ only.
- Step 2 \mathbb{Z}_4 discovered with knowledge of $\{X, Y, Z\}$ only.
- Step 3 \mathbb{Z}_7 discovered with knowledge of $\{X, Y, Z\}$ only. \mathbb{Z}_5 might also be discovered for some graphical structures (e.g., when $|\mathbb{Z}_1| = 0$).
- Step 4 A fraction of Z_{POST} is discovered, providing complete knowledge of Z_6 and partial knowledge of Z_2 and Z_3 . This step leverages prior knowledge of Z_4 that was obtained programmatically at Step 2.
- Step 5 \mathbf{Z}_{Mix} is temporarily aggregated, providing partial knowledge of $\mathbf{Z}_1, \mathbf{Z}_2, \mathbf{Z}_3$, and \mathbf{Z}_5 . \mathbf{Z}_{Mix} is a transient superset that is used to differentiate \mathbf{Z}_1 and \mathbf{Z}_5 from \mathbf{Z}_{POST} in Step 6.

- Step 6 Knowledge of Z_{POST} is complete. Z_{MIX} is fully disaggregated, providing final partition labels for some members and moving others to superset Z_{1,5}. At this stage, we also finalize our knowledge of Z₇. By Line 19, all members of Z₅ have been placed in Z_{1,5}. By Line 22, Z₁ that are adjacent to Y have been uniquely identified.
- Step 7 \mathbb{Z}_1 and \mathbb{Z}_5 are fully differentiated from each other. This step tests whether a member of superset $\mathbb{Z}_{1,5}$ is marginally dependent on known members of \mathbb{Z}_1 . All previously known members of \mathbb{Z}_1 are adjacent to Y. \mathbb{Z}_1 that are left to be discovered are those with indirect active paths to Y. Even when C1 is violated, no \mathbb{Z}_5 will ever be dependent on a \mathbb{Z}_1 that is directly adjacent to Y. However, all members of \mathbb{Z}_1 are marginally dependent on at least one \mathbb{Z}_1 adjacent to Y. This step concludes by testing the \mathbb{Z}_5 criterion, which raises a warning when failed.

Sample size

Figure G.1: LDP partition accuracy on the MILDEW benchmark. Mean accuracy was computed for 10 replicate samples from the ground truth DAG using bnlearn [Scutari, 2010]. We measure partition accuracy as the percent of partition labels that are consistent with ground truth. Independence was determined by chi-square tests ($\alpha = 0.005$). Shaded regions represent the 95% confidence interval. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.

LDP correctly partitions 98.7%[97.6, 99.9] of linear-Bernoulli instantiations and 98.7%[98.0, 99.4] of quadratic hypergeometric instantiations of this DAG (100 replicates each, n = 20k).

Figure D.1: Two DAGs that exemplify the behavior of LDP for valid adjustment set detection in the presence of inter-partition active paths. All red nodes will be placed in \mathbf{Z}_1 by LDP. All confounders for $\{X, Y\}$ that are colored green will be mislabeled due to their marginal dependence on \mathbb{Z}_4 or \mathbb{Z}_5 .

Left: Fr Lemma D.20, 2_1^2 , 2_1^2 and 2_1^2 will be placed in Z_1 . Does bette heir marginal dependence on the only Z_2 for the Fortcurrent Z_2^2 and Z_1^2 will be placed in Z_{Port} due to presence of Z_1 , as $Z^2 + Z_1^2$ and $Z_1^2 + Z_1^2$. Together, the confounders highlighted in ref $\{Z_1, Z_1^2, Z_1^2, Z_1^2, Z_1^2\}$ constitute a valid adjustment set that block per albed to descendence of Z_1 . As a start of Z_1^2 and Z_1^2 and Z_1^2 and Z_1^2 are permissible between Z_1^2 and Z_1^2 per proposition D.18. If will be place in Z_1 . No causal path of either directionality is permissible between Z_1^2 and Z_1^2 per proposition D.18. If will be place in Z_1 be vert contain a confounder analogous to Z_1^2 , this would be permissible of Z_1^2 be the proposition Z_1^2 . The proposition Z_1^2 because Z_1^2

Right: This DAG contains a modified butterfly structure, which will be partially retained in \mathbb{Z}_1 ($\{Z_1^*, Z_1^*, Z_1^*\}$) while still blocking all backdoor paths. As there is only one Z_2 in this structure and no backdoor path whose members are marginally independent of Z_1 , this confounder will be mislabeled as \mathbb{Z}_{1007} at Step 6. This DAG also illustrates a case where a member \mathbb{Z}_2 , $\{Z_2^*\}$ is placed in \mathbb{Z}_1 . Inclusion of Z_2^* does not violate the validity of the adjustment set returned by LDP, as this node is not a descendent of X and adjusting for $\{Z_1^*, Z_1^*, Z_1^*\}$

The MILDEW benchmark

VAS discovery

Figure 7: Baselines on MILDEW ($|\mathbf{Z}| = 31$) and a linear-Gaussian DAG ($|\mathbf{Z}| = 8$) (Tables G.8, G.9). Independence was determined with chi-square tests for MILDEW ($\alpha = 0.001$) and Fisher-z tests for the linear-Gaussian DAG ($\alpha = 0.01$). Results were averaged over 10 and 100 replicates per sample size for MILDEW and the linear-Gaussian DAG, respectively (95% confidence intervals in shaded regions). Precision and recall for Z₁ identification were computed per adjustment set.

VAS with latent variables

LATENT	VAS Exists	\mathbf{Z}_5 Crit	% VALID
B_1	1	1	100
B_2	1	1	99
Z_{4a}	1	1	99
M_2	1	1	100
Z_{5a}	1	1	99
M_1	1	1	100
Z_1	×	×	0
B_3	×	×	0

