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Clinical trials: Essential but challenging
1 Background

Randomized controlled trials (RCTs) are the gold standard for evaluating the
treatment effects of medical interventions (e.g., efficacy and safety).

However, they pose significant challenges.
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Clinical trials: Essential but challenging
1 Background

• Time: Phase I, months; Phase II, months to 2 years; Phase III, 1–4 years [FDA].

• Financial costs:
— On average, clinical trials cost $28M in Phase I, $65M in Phase II, $282M in Phase III.1
— $0.8B to $2.3B in R&D spending per new drug, clinical and preclinical [US CBO].
— For each successful drug, an average of $690M is spent on drugs that fail [US CBO].

• Generalizability: Participants are often not representative of the general population, due to stringent inclu-
sion/exclusion criteria (favoring “ideal patients”).

1Joseph A. DiMasi, Henry G. Grabowski, and Ronald W. Hansen,“Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs,”Journal of Health Economics, vol.
47 (May 2016), pp. 23–24, https://doi.org/10.1016/j.jhealeco.2016.01.012.
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https://www.fda.gov/patients/drug-development-process/step-3-clinical-research


Target trial emulation (TTE)
1 Background

We cannot replace RCTs entirely.

But can we complement R&D with in silico strategies?
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Target trial emulation (TTE)
1 Background

• TTE incorporates principles of clinical trial design into observational data analysis, using diverse strategies
from causal inference, statistics, and machine learning.

• Acceleration: Can we use insights from observational data to probe hypotheses on faster timescales, and
inform subsequent RCT design?

• Automation: Can we use algorithms to automate steps of R&D in a safe, principled, and data-driven manner?
What theoretical guarantees can we provide?
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Target trial emulation (TTE)
1 Background

Advantages of TTE:
• Efficient: Running an algorithm is faster than performing an RCT.
• Cheap: Analysis on existing observational data is less costly than performing an RCT.
• Generalizable: Optimally, we can obtain data for large-scale, real-world populations.

Challenges of TTE:
• Incomplete information: Not everything can be captured in the data (e.g., genetic markers for Alzheimer’s

Disease are not available in EHR).
• Irregular follow-up: Patient visits are temporally irregular.
• No randomization: Confounding poses major challenges.
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Probabilistic graphical modeling for TTE
1 Background

Probabilistic graphical modeling is a branch of machine learning that uses probability distributions to
• Describe the world.
• Make predictions.
• Support decision-making under uncertainty.

PGMs concisely represent joint distributions over complex domains, like human disease or the economy. This
framework yields powerful generative models for probabilistic and causal reasoning that can assist TTE.

Example PGMs include Bayesian networks (i.e., directed acyclic graphs, or DAGs) and variational autoencoders.
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Causal discovery: A tool for insights
1 Background

Causal DAGs are PGMs that impose a causal interpretation on directed edges, enabling causal reasoning.

Causal discovery can be used to learn joint representations from data via diverse strategies.
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Causal discovery: A tool for insights
1 Background

Many avenues for inference open up once the structure of the data is known.

For example, discovering confounder Var0 can enable causal effect estimation for Var1 → Var2.
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My work: Methods←→ Applications
1 Background
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Motivation: Covariate adjustment in TTE
2 Local Discovery by Partitioning (LDP)

This work emulated trials for thousands of medications from two large-scale real-world data warehouses (10+
years of clinical records, 170M+ patients), using propensity score models under the IPTW framework and causal
discovery for covariate selection.
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Motivation: Covariate adjustment in TTE
2 Local Discovery by Partitioning (LDP)

Covariates were selected using a variant of the PC algorithm [1]. Inferred colliders and mediators were removed.
The remaining variables formed the adjustment set.
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Motivation: Covariate adjustment in TTE
2 Local Discovery by Partitioning (LDP)

Why is this approach problematic?

• The forbidden set: Valid adjustment sets (VAS) cannot contain descendants of the exposure, but mediators
and colliders are only a fraction of this forbidden set.

• Ambiguity: PC returns the Markov equivalence class (MEC) of the true DAG, leaving some paths ambiguous.

• Sample complexity: PC only provides asymptotic guarantees, and displays notorious failure modes under
finite samples due to high sample complexity.

• Latent variables: The possibility of latent confounding (i.e., causal insufficiency) is not addressed.
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Motivation: Is global discovery effective?
2 Local Discovery by Partitioning (LDP)

Classic constraint-based global discovery [1] can fail even on simple DAGs with moderately large sample sizes, in
causally sufficient and insufficient settings.
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Contributions of LDP
2 Local Discovery by Partitioning (LDP)

1. Partition taxonomy: A taxonomy of eight exhaustive, mutually exclusive causal partitions that are universal
properties of any dataset w.r.t. an exposure-outcome pair.

2. Partition discovery method: A nonparametric, polynomial-time procedure for learning these partitions.

3. VAS discovery method: LDP returns a VAS under causal insufficiency and mild graphical conditions (relative
to existing automated covariate selection methods).
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Contributions of LDP
2 Local Discovery by Partitioning (LDP)

• Time efficiency: Total independence tests is worst-case quadratic with respect to total variables, versus expo-
nential for common baselines. On a community benchmark, LDP ran at least 1300× faster than baselines.

• Sample efficiency: The majority of CI tests defined in LDP use conditioning sets of size one or two, con-
tributing to more favorable sample efficiency.

• Flexibility: LDP is nonparametric and does not assume the magnitude of the exposure-outcome effect (which
may be null). We replace the conventional pretreatment assumption with a milder graphical requirement.
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Preliminaries: Does X cause Y?
2 Local Discovery by Partitioning (LDP)

Does X cause Y? If so, how strong is the effect?
How can we achieve conditional exchangeability, such that this effect is identifiable?

X Y

Z

?
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Preliminaries: Why not adjust for everything?
2 Local Discovery by Partitioning (LDP)

• Bias: Multiple variable types can induce bias when retained for adjustment [2, 3].
1. Colliders induce selection bias [4–6].
2. Mediators bias total effects by controlling for indirect effects [7].
3. Instruments can amplify existing bias or introduce new bias in some settings [8].

• Variance: Unnecessary adjustment can inflate the variance of effect estimates [3].

• Curse of dimensionality: Unnecessary adjustment can undermine model fitting [9].
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Preliminaries: Non-causal associations
2 Local Discovery by Partitioning (LDP)

X Y

Z
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Preliminaries: The backdoor criterion
2 Local Discovery by Partitioning (LDP)
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Preliminaries: Adjustment blocks backdoor paths
2 Local Discovery by Partitioning (LDP)
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Method: Partitions are universal properties
2 Local Discovery by Partitioning (LDP)
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Method: LDP learns partitions progressively
2 Local Discovery by Partitioning (LDP)
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Method: LDP learns partitions progressively
2 Local Discovery by Partitioning (LDP)
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Results: Fewer tests, faster runtimes
2 Local Discovery by Partitioning (LDP)

Results with an oracle. On a community benchmark, LDP ran 1400× to 2500× faster than PC.
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Results: Partition correctness
2 Local Discovery by Partitioning (LDP)

LDP correctly partitions 98.7%[97.6, 99.9] of linear-Bernoulli instantiations and 98.7%[98.0, 99.4] of quadratic hypergeometric
instantiations of this DAG (100 replicates each, n = 20k).
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Results: VAS with and without latent variables
2 Local Discovery by Partitioning (LDP)

LDP provides VAS for these structures 100% of the time with an oracle and ≥ 97% on finite samples. At right, each variable with
a dashed perimeter was iteratively dropped to simulate latent confounding.
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Results: Less biased, more precise ATE
2 Local Discovery by Partitioning (LDP)

Results on a 10-node linear-Gaussian DAG suggest that LDP offers greater sample and statistical efficiency for average treatment
effect (ATE) estimation relative to baseline causal discovery algorithms.
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Next steps
2 Local Discovery by Partitioning (LDP)

1. Target trial emulation
— Research question: Does more rigorous covariate selection improve causal inference for drug repurposing?
— We will reperform the large-scale Alzheimer’s drug repurposing TTE proposed in Zang et al. 2023 [10] using LDP for

covariate selection.

2. Causal fairness and heterogeneous treatment effects
— Research question: Do sex, ethnicity, or other protected attributes cause differential patient outcomes in liver trans-

plantation in the US health system?
— Drawing principles from the Standard Fairness Model [11], we use LDP to identify VAS for heterogeneous treatment

effect estimation.

34/38



Thank you! Any questions?

maasch@cs.cornell.edu
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