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Causal inference with observational data
1 Background

1. Identify the causal quantity of interest.
— Example: Average treatment effect (ATE) of a drug on a disease state.
— A graphical model of the data generating process (DGP) enables identifiability.
— We can learn this model with data-driven methods.

2. Perform inference to estimate this quantity.

— Express the parameter as a function of the DGP.
— Apply estimation methods (e.g., TMLE, doubly robust ML, etc.).
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Graphical models for causal effect identification
1 Background

confounder

exposure outcome

Blocking all backdoor paths for {X, Y} by adjusting for confounder Z allows for
unconfoundedness or conditional exchangeability: Y(1),Y(0) 1 X | Z.

This removes noncausal association for unbiased ATE estimation.
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Graphical models for causal effect identification
1 Background

confounder

exposure outcome

The correct directed acyclic graph (DAG) enables unique identification of the true ATE:
E[Y(1) — Y(0)] = Ez[E[Y | X=1,Z] - E[Y | X = 0, Z]]
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Graphical models for causal effect identification
1 Background

Real-world example: diabetes risk

/\

Antipsychotic —> BMI ——> Diabetes
agents

Whether the patient takes certain antipsychotics is a confounder
for BMI and risk of developing diabetes [ECM20].
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ATE estimates converge to the true value when controlling for Z only (left),
but remain biased when controlling for {17, Z} (right).



Causal discovery: learning structure from data
1 Background

confounder

exposure outcome

+ Data-driven: Learn the underlying graphical model, with or without prior knowledge.
» Global discovery: Learn the entire DAG from data.
 Local discovery: Learn only the relevant substructures (e.g., role of Z only).
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Failure modes of global discovery
1 Background

Ground truth PC (n = 10k)

+ Constraint-based methods PC and FCI [SGS00] use conditional independence tests
to identify the undirected skeleton of the graph and orient edges.

» Drawbacks: Exponential time complexity, high sample complexity, order dependence.
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Local Discovery by Partitioning (LDP)

2 Local Discovery by Partitioning (LDP)

To address these failure modes for the setting of downstream causal effect estimation:

1. We prove the existence of an exhaustive causal partition taxonomy defining any arbitrary DAG
w.r.t. the exposure and outcome.

2. We propose a local discovery procedure that learns causal partitions directly.

3. LDP is asymptotically guaranteed to return a confounder set for unbiased ATE estimation.
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Local causal partition learning
2 Local Discovery by Partitioning (LDP)

N
2z )
N N

&

"/

Case 1: Z is a confounder.

Case 2: Z is a collider.

Case 3: Z is a mediator.

( Zs )

/

@/ﬂm
S

Case 5: Z causes exposure.

Ve

Zs)

N h x;\

Case 6: Outcome causes Z.

)

G

Ve

(z)

Case 7: Exposure causes Z.

Case 8: Z is isolated.




Local causal partition learning
2 Local Discovery by Partitioning (LDP)

Universal property of DAGs: There exists a unique partitioning of the variables into eight
exhaustive, mutually exclusive subsets defined by their relation to {X, Y}.
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LDP learns causal partitions directly
2 Local Discovery by Partitioning (LDP)
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Partition labels can be obtained with nonparametric or parametric independence tests.
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Fewer tests and faster runtimes
2 Local Discovery by Partitioning (LDP)
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» Polynomial-time: Worst-case quadratic number of Cl tests w.r.t. cardinality.

— Left: Local and global constraint-based baselines are worst-case exponential.
— Right: On a bnlearn benchmark (33 nodes), LDP ran 1400x to 2500 x faster than PC.
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LDP for confounder discovery
2 Local Discovery by Partitioning (LDP)

Asymptotically guaranteed to return a valid adjustment set (VAS)
under latent confounding and mild graphical conditions.

"4

{Z,, By, By, B3} is a VAS of confounders for {X, Y}:
1) Blocks all backdoor paths and 2) contains no descendants of X [PJS17].
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LDP for confounder discovery
2 Local Discovery by Partitioning (LDP)
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« Sample efficient: Most conditioning sets of size one or two.
— Local and global baselines use larger conditioning set sizes, on average.
— LDP is more performant on small finite samples.
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LDP for precise and unbiased ATE estimation
2 Local Discovery by Partitioning (LDP)
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+ LDECC * LDP = MB-by-MB PC

Results on a 10-node linear-Gaussian DAG.
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Thank you! Any questions?

maasch@cs.cornell.edu

arXiv:2310.17816 jmaasch.github.io

17/33



[ECM20]
[SGS00]

[PUS17]
[Lu+21]
[SCPOg]

[HHRO4]
[EW14]

[HA22]
[Peal1]
[Peai2]
[SLG16]

[Lee+22]

18/33

References

M. Etminan et al. “Using causal diagrams to improve the design and interpretation of medical research”. In: Chest 158.1 (2020), S21-S28.

P. Spirtes et al. Causation, Prediction, and Search. en. Ed. by J. Berger et al. Vol. 81. Lecture Notes in Statistics. New York, NY: Springer New York, 2000. poi:
10.1007/978-1-4612-2748-9.

J. Peters et al. Elements of causal inference: foundations and learning algorithms. Cambridge, Massachusetts: The MIT Press, 2017.
H. Lu et al. “Revisiting Overadjustment Bias”. en. In: Epidemiology 32.5 (2021), e22—e23. poi: 10.1097/EDE.0000000000001377.

E. F. Schisterman et al. “Overadjustment Bias and Unnecessary Adjustment in Epidemiologic Studies”. en. In: Epidemiology 20.4 (2009), pp. 488-495. pol:
10.1097/EDE.0b013e3181a819al.

M. A. Hernan et al. “A Structural Approach to Selection Bias”. en. In: Epidemiology 15.5 (2004), pp. 615-625. poi: 10.1097/01.ede.0000135174.63482.43.

F. Elwert et al. “Endogenous Selection Bias: The Problem of Conditioning on a Collider Variable”. In: Annual Review of Sociology 40.1 (2014), pp. 31-53. poi:
10.1146/annurev-soc-071913-043455.

M. J. Holmberg et al. “Collider bias”. In: JAMA Guide to Statistics and Methods 327.13 (2022).
J. Pearl. “Direct and Indirect Effects”. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence. 2001.
J. Pearl. “On a Class of Bias-Amplifying Variables that Endanger Effect Estimates”. en. In: (2012).

M. E. Schnitzer et al. “Variable Selection for Confounder Control, Flexible Modeling and Collaborative Targeted Minimum Loss-Based Estimation in Causal
Inference”. In: The International Journal of Biostatistics 12.1 (2016), pp. 97—115. por: 10.1515/1jb-2015-0017.

J. J. Lee et al. “Causal determinants of postoperative length of stay in cardiac surgery using causal graphical learning”. In: The Journal of Thoracic and Cardio-
vascular Surgery (2022), S002252232200900X. DoOI: 10.1016/j. jtcvs.2022.08.012.


https://doi.org/10.1007/978-1-4612-2748-9
https://doi.org/10.1097/EDE.0000000000001377
https://doi.org/10.1097/EDE.0b013e3181a819a1
https://doi.org/10.1097/01.ede.0000135174.63482.43
https://doi.org/10.1146/annurev-soc-071913-043455
https://doi.org/10.1515/ijb-2015-0017
https://doi.org/10.1016/j.jtcvs.2022.08.012

Causal Markov and faithfulness

Faithfulness Assumption
Recall the Markov assumption: X oY |Z = X UpY |Z
Causal graph — Data
Causal graph «<—— Data
Faithfulness: X llgY |Z < X 1lpY|Z

https://www.bradyneal.com/causal-inference-course
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Preliminaries: Non-causal associations

Definition 2.3 (Backdoor path, Pearl 2009). Any
non-causal path between exposure X and outcome Y
with an edge pointing into X (--- — X).
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Valid adjustment under the backdoor criterion

Definition 2.4 (Valid adjustment under the backdoor
criterion, Peters et al. 2017). Let Axy be an adjust-
ment set for {X,Y} that does not contain {X,Y}.
Axy is valid if

1. Axy contains no descendants of X and
2. Axy blocks all backdoor paths from X to Y.
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Why not adjust for everything?

+ Bias: Multiple variable types can induce bias when retained for adjustment [Lu+21;
SCPO09].

1. Colliders induce selection bias [HHR04; EW14; HA22].
2. Mediators bias total effects by controlling for indirect effects [Pea01].
3. Instruments can amplify existing bias or introduce new bias in some settings [Peai2].

« Variance: Unnecessary adjustment can inflate the variance of effect estimates [SCP09].

» Curse of dimensionality: Unnecessary adjustment can undermine model fitting [SLG16].
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Graphical models for causal effect identification

Real-world example: causal determinants of postoperative length of stay

Endotracheal Intubation

Laryngoscope N\

Flexible tube ) B * - Larynx
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Extubation in the operating room (extOR) is a confounder for the effect of reintubation
(reint) on postoperative length of stay (pLOS) after cardiac surgery [Lee+22].

Trachea
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Sufficient conditions for identifiability

Sufficient conditions for VAS discovery are more relaxed than for correct

partitioning.

Sufficient Conditions for Correct Partitioning Given an
independence oracle, we define sufficient (but not necessary)
conditions for asymptotically correct partition labeling:

C1 The absence of inter-partition active paths (Def. 3.2).

C2 The existence of at least one Z.

C3 The existence of at least one Z5. Further, all Z; are
marginally independent of at least one observed Zs.

C4 Causal sufficiency in Gxyz.

Sufficient Conditions for VAS Identification Per Defini-
ton 2.4, a VAS 1) contains no descendants of X and 2)
blocks all backdoor paths from X to Y. With Theorem 4.5,
we show that the VAS returned by LDP (Partition Z;) meets
both criteria (Lemmas 4.2, 4.4) in the presence of causal
insufficiency and arbitrary inter-partition active paths, given
Condition C2, Condition C3, and a non-empty Zs¢q4;(x)-
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LDP learns partitions directly

Algorithm 1 Local Discovery by Partitioning (LDP)

input X,Y, Z, independence test, significance level .
output Partitions of Z: Zy, Z4, Zs, Z7, Zg, Zpost.

N =

: CopyZ' + Z
: forall Z € Z' do

> STEP 1: TEST FOR Zg
if X 1L ZandY 1L Z then Z € Zs
> STEP 2: TEST FOR Z4
elseif X 1l Zand X )L Z|Y then Z € Zy
> STEP 3: TEST FOR Zs 7
elseif Y ) ZandY 1L Z|X then Z € Zs 7

6: Z' « Z'\ZsUZs7UZs

> STEP 4: TEST FOR Zpost

: if |Z4] > 0 then

forall Z € Z' do
if32Z4:Z U Zyor Z I Z4| X UY then Z € Zposr

: Z' « Z'\ Zposr

> STEP 5: TEST FOR Zix

: forall Z € Z' do

Y Y ZandY 1L Z|X UZ'\ Z then
Z €Z1235 € Zmix

2 7'\ Zoax

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

> STEP 6: SPLIT Zyx BETWEEN Z 5, Z7, Zpost

2 Zvix < Zmix U Zs 7
. if |Zmix| > 0 and |Z'| > O then

for all Z € Z' do
if 3 Zvix € Znx: Zwnx AL Z and Zvix L Z| X then
Z € Z1, Zmix € Z15 ¢ Znmix
else Z € Zpost
for all Zyix € Zyix do
if3 Z15: Z15 1L Zmix then Zwmix € Z1
else Zyvix € Zposr

1 if |Zy5] > Othen Z7 « Zs 7

> STEP 7: FINALIZE Z1 AND Zs
if |Z1 5| > 0 and |Z,| > 0 then
for all Zy 5 € Z15 do
if3Z1€Z1:Z1 5L Zithen Z1 5 € Zy
else Z15 € Zs
if |Zs] > 0 then
for Zs € Zs do
if Zs L X|Z5 U Zposr \ Z5 then
Zs € Zscaqj(x) and Z; is a VAS
{not identifiable} « Z ¢ Z1, Z4, Zs, Z7, Zs, Zposr
return Partitions of Z and {not identifiable}.




LDP learns partitions directly

Step 6 Knowledge of Zposr is complete. Zyyx is fully
disaggregated, providing final partition labels for
some members and moving others to superset Z1 5.

Step 1 Zg discovered with knowledge of {X,Y, Z} only. /];t “]ii,s S“;g;’ Yle also Sna]iz; ;“r;m"wéedge ‘1’f Z;.
Step 2 Z4 discovered with knowledge of {X,Y, Z} only. y Lne 19, all memoers of £s have been place

N . in Z; 5. By Line 22, Z; that are adjacent to Y have
Step 3 Z discovered with knowledge of {X,Y, Z} only. beenl iniqiely idemiﬁéd. !

Z5 might also be discovered for some graphical Step 7 Zy and Zj5 are fully differentiated from each other.

High-Level Overview Here, we describe the basic logic of
Algorithm 1 in plain English.

structures (e.g., when |Z;| = 0). This step tests whether a member of superset Z 5
Step 4 A fraction of Zpgr is discovered, providing com- is marginally dependent on known members of Z; .
plete knowledge of Zg and partial knowledge of All previously known members of Z, are adjacent

to Y. Z, that are left to be discovered are those
with indirect active paths to Y. Even when C1 is
violated, no Z5 will ever be dependent on a Z; that
is directly adjacent to Y. However, all members

Z, and Zs3. This step leverages prior knowledge of
Z, that was obtained programmatically at Step 2.
Step 5 Zwix is temporarily aggregated, providing partial

knowledge of Z1, Zy, Z3, and Zs. Zyy is a tran- of Z; are marginally dependent on at least one Z;
sient superset that is used to differentiate Z; and adjacent to Y. This step concludes by testing the
Zs from Zpogy in Step 6. Z; criterion, which raises a warning when failed.
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LDP partition correctness
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LDP partition correctness
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Figure G.1: LDP partition accuracy on the MILDEW benchmark. Mean accuracy was computed for 10 replicate samples
from the ground truth DAG using bnlearn [Scutari, 2010]. We measure partition accuracy as the percent of partition
labels that are consistent with ground truth. Independence was determined by chi-square tests (oc = 0.005). Shaded regions
represent the 95% confidence interval. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.
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LDP correctly partitions 98.7%[97.6,99.9] of linear-Bernoulli instantiations and 98.7%(98.0, 99.4] of
quadratic hypergeometric instantiations of this DAG (100 replicates each, n = 20k).
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LDP partition correctness
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Figure D.1: Two DAGs that exemplify the behavior of LDP for valid adjustment set detection in the presence
of inter-partition active paths. All red nodes will be placed in Z; by LDP. All confounders for {X,Y} that are
colored green will be mislabeled due to their marginal dependence on Zs or Zs.

Left: Per Lemma D.20, Z}, Z} and Z{ will be placed in Z;. Despite their marginal dependence on the only Z5
in this structure, Z7 and Z} will never be placed in Zposy due to the presence of Z}, as Z{ AL Z} and Z} 1L Z{.
Together, the confounders highlighted in red ({21, 22, Z}, Z3, 8}) constitute a valid adjustment set that blocks
all backdoor paths and contains no descendents of X. No causal path of either directionality is permissible
between Z7 and Z] per Proposition D.18. If this path were to contain a confounder analogous to Z3, this would
be permissible and this node would be placed in Z; by LDP.

Right: This DAG contains a modified butterfly structure, which will be partially retained in Z; ({23, Z{, Z}})
while still blocking all backdoor paths. As there is only one Zs in this structure and no backdoor path whose
members are of Z}, this will be as Zposr at Step 6. This DAG
also illustrates a case where a member of Z, (22) is placed in Z,. Inclusion of Z% does not violate the validity
of the adjustment set returned by LDP, as this node is not a descendent of X and adjusting for {Z%, Z}, Z7}
prevents collider bias.
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VAS discovery

MILDEW (FIGURE E.3)
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LINEAR-GAUSSIAN 10-NODE DAG (FIGURE 3)
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Figure 7: Baselines on MILDEW (|Z| = 31) and a linear-Gaussian DAG (|Z| = 8) (Tables G.8, G.9). Independence was
determined with chi-square tests for MILDEW (o = 0.001) and Fisher-z tests for the linear-Gaussian DAG (a = 0.01).
Results were averaged over 10 and 100 replicates per sample size for MILDEW and the linear-Gaussian DAG, respectively
(95% confidence intervals in shaded regions). Precision and recall for Z, identification were computed per adjustment set.
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VAS with latent variables

LATENT VAS EXISTS Zs5 CRIT % VALID
B v v 100
B, v v 99
Zia v v 99
Mo v v 100
Zsa v v 99
M, v v 100
Z, X X 0

Bs X X 0
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