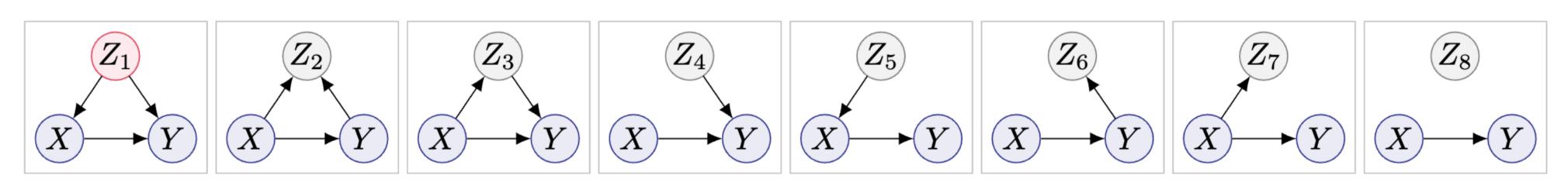
LOCAL DISCOVERY BY PARTITIONING

Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs

Jacqueline Maasch^{1,2,*}, Weishen Pan^{2,3}, Shantanu Gupta⁴, Volodymyr Kuleshov¹, Kyra Gan⁵, Fei Wang^{2,3}

¹Department of Computer Science, Cornell Tech; ²Institute of AI for Digital Health, Weill Cornell Medicine; ³Department of Population Health Sciences, Weill Cornell Medicine; ⁴Machine Learning Department, Carnegie Mellon University; ⁵Department of Operations Research and Information Engineering, Cornell Tech; *maasch@cs.cornell.edu

OVERVIEW


- Constraint-based confounder discovery: Local discovery by partitioning (LDP) returns a valid adjustment set (VAS) for an exposure X and outcome Y under Pearl's backdoor criterion (Theorem 2).
- *Robust to latent confounding:* If a specific *d*-separation criterion is passed (Definition 1), the adjustment set is valid under causal insufficiency.
- *Returns partition labels, not graphs:* Instead of learning the causal graph, LDP learns causal partition labels describing the relationship between a given variable, X, and Y (Theorem 1). Partitions are universal properties of arbitrary DAGs.
- Polynomial time: Total number of independence tests performed scales quadratically with respect to variable set size (versus worst-case exponential for baselines).
- Less biased effect estimation: Adjustment sets from LDP yield less biased and more precise average treatment effect (ATE) estimates than baselines (bottom right).

UNIVERSAL PROPERTY: CAUSAL PARTITIONS

Theorem 1. Take any arbitrary DAG and a specific exposure X and outcome Y. The eight partitions defined below are exhaustive and disjoint, such that any variable Z falls uniquely under one partition category with respect to $\{X, Y\}$.

EXHAUSTIVE AND MUTUALLY EXCLUSIVE CAUSAL PARTITIONS 2.5), and their proxies (Definition B.8). \mathbb{Z}_2 Colliders and their proxies: Non-ancestors of $\{X, Y\}$ with at least one active path to X not mediated by Y and at least one active path to Y not mediated by X. *Mediators and their proxies*: Descendants of X that are ancestors of Y, and their proxies (Definition B.8). \mathbf{Z}_3 Non-descendants of Y that are marginally dependent on Y but marginally independent of X (Definition B.3). \mathbf{Z}_4 no confounders with Y (Definitions B.1 and B.8).

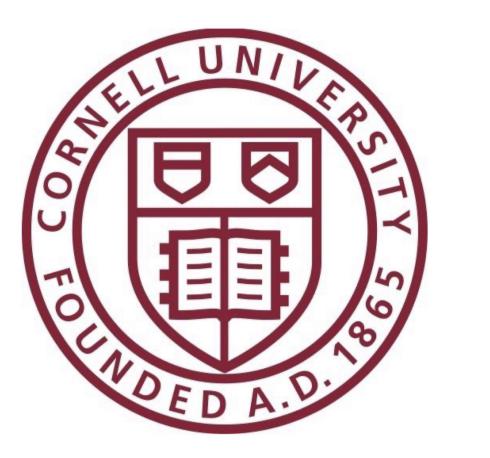
- Descendants of Y where all active paths shared with X are mediated by Y.
- Descendants of X where all active paths shared with Y are mediated by X. \mathbf{Z}_7
- All nodes that share no active paths with X nor Y. \mathbf{Z}_{8}

Intuition: Partitions generalize the acyclic triples induced by $\{X, Y, Z\}$ to the case of arbitrarily large graphs.

Confounders and their proxies: Non-descendants of X that lie on an active backdoor path between X and Y (Definition

Instruments and their proxies: Non-descendants of X whose causal effect on Y is fully mediated by X, and that share

PRESENTED AT THE 40th CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2024), BARCELONA, SPAIN. COPYRIGHT 2024 BY THE AUTHORS.

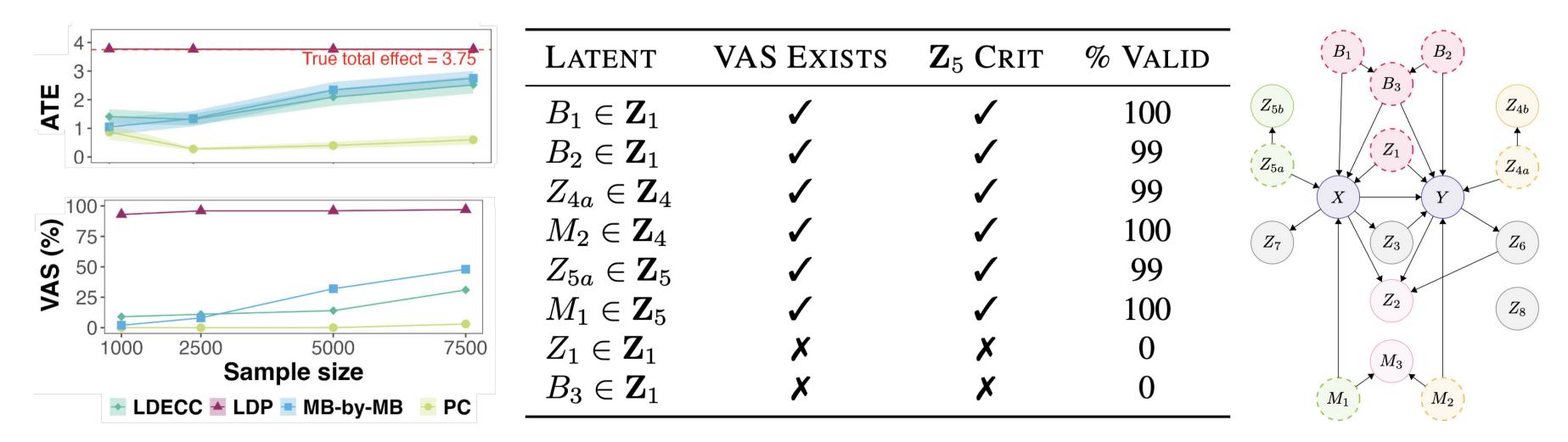


1: Ic

LDP returns a higher proportion of VAS for a ten-node DAG, compared to baselines (left). Results of the Z_5 criterion are consistent with whether a VAS exists in latently confounded variable sets (center, right).

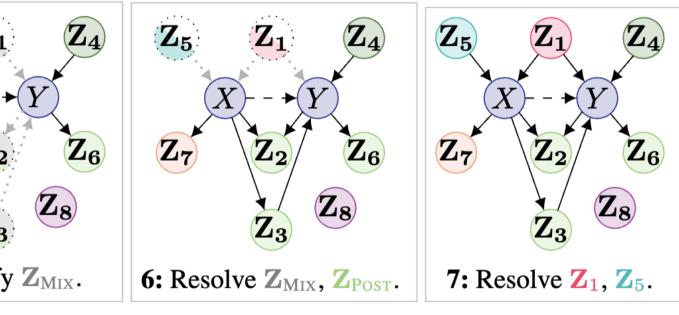
PARTITIONING FOR VALID ADJUSTMENT SET DISCOVERY

$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Z_{5} \qquad Z_{1} \qquad Z_{4}$ $X \rightarrow Y$ $Z_{7} \qquad Z_{2} \qquad Z_{6}$ $Z_{3} \qquad Z_{8}$		
Identify \mathbf{Z}_8 .	2: Identify \mathbb{Z}_4 .	3: Identify \mathbb{Z}_7 , maybe \mathbb{Z}_5 .	4: Identify some \mathbf{Z}_{POST} .	5: Identify


Sufficient (not necessary) conditions for correctness: There exists at least one observed member of Z_4 and Z_5 .

ROBUSTNESS TO LATENT CONFOUNDING

Lemma 1. LDP does not place descendants of X in \mathbb{Z}_1 under sufficient conditions. **Definition 1** (\mathbb{Z}_5 criterion). True if $\exists Z_5 \in \mathbb{Z}_5$ that is *d*-separable from Y given X and \mathbb{Z}_1 ($Z_5 \perp Y \mid X \cup \mathbb{Z}_1$). **Lemma 2.** Passing the \mathbb{Z}_5 criterion is a valid indicator that \mathbb{Z}_1 blocks all backdoor paths.


Theorem 2 (LDP returns a VAS for $\{X, Y\}$ under the backdoor criterion). Following from Lemmas 1 and 2, if the \mathbb{Z}_5 criterion is passed, then the \mathbb{Z}_1 returned by LDP is asymptotically guaranteed to be a VAS for $\{X, Y\}$.

VALID ADJUSTMENT SETS FOR ATE ESTIMATION

Acknowledgments The authors would like to acknowledge support from the NSF Graduate Research Fellowship (author JM); NSF 1750326, 2212175; and NIH R01AG080991, R01AG076234 for this research.

