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Abstract
Autonomous reasoning is among the most scien-
tifically and economically motivating topics in
AI today. Historically the purview of symbolic
AI, recent advances have mainly emerged from
deep probabilistic generative models. Despite im-
mense interest and rapid progress, the generative
AI community has not clearly converged on oper-
ational definitions for reasoning and often implic-
itly rejects the historical treatment of this topic in
logic, verifiable automated reasoning, and sym-
bolic methods in general. This position contends
that definitional ambiguity leaves the construct
validity of reasoning evaluation unverifiable,
and undermines quantifiable progress toward
the collective goal of trustworthy autonomous
reasoning. We also contend that this ambiguity
is addressable. To that end, we provide (1) gen-
eral and extensible definitions for valid and sound
reasoning based on a synthesis of the literature,
which can serve as an accessible reference and a
starting point for community discussion; and (2) a
checklist for best practices in the communication
of AI reasoning research.

1. Introduction
The prospect of AI reasoning is among the most scientif-
ically and economically motivating advancements of the
current era. Recent progress has been fueled by the re-
markable empirical performance of large reasoning models
(LRMs): large language models (LLMs) fine-tuned for rea-
soning tasks (Def. E.1; Huang & Chang 2023). A wave
of benchmarking successes invites many questions: Is au-
tonomous reasoning an emergent behavior that arises with
scale (Wei et al., 2022a; González & Nori, 2024)? Is it a
foregone conclusion that LRMs can be formally character-
ized as autonomous reasoners? The answers are contingent
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REASONING — INFORMAL DEFINITION

The process of selecting and applying sequences of rules
that act on prior beliefs and current evidence to obtain
principled belief updates in evolving states.

CORE POSITIONS

Thesis 1 Define, then measure.
1.1 Research concerned with AI reasoning should pro-

vide formal operational definitions for the reasoning
phenomena under investigation.

1.2 The construct validity of reasoning evaluation
should be explicitly justified with respect to the
operational definitions provided.

Thesis 2 Reasoning is a (learnable) rule-based process.
2.1 Reasoning is a process of exact rule application.

Learnable rules unambiguously map reasoning in-
puts to outputs and can encompass theorems, func-
tions, policies, etc., including rules pertaining to
stochasticity, uncertainty, and approximation.

Thesis 3 Rule-based reasoning is valid.
3.1 The validity of a reasoning process arises from exact

rule application, independent of rule selection.

Figure 1. Core theses of this position.

on how reasoning is defined. So then, what is reasoning?
Though a universal definition may not exist, we argue that
practical operational definitions (Def. E.2) are achievable
but not yet in widespread use in generative AI. Building
on Feynman’s adage,1 we are motivated by the following:
What I cannot define, I do not understand.

Lack of Consensus Reasoning remains an elusive target,
despite prolific study across the history of human thought.
Although claims of emergent reasoning in generative AI
are now commonplace, “there is not a clear definition of
what it entails” (Huang & Chang, 2023). In the absence
of community consensus on what formally constitutes rea-
soning in generative AI, we observe a normalization of
research outputs that claim to study, improve, measure, or
promote AI reasoning without rigorously defining the form
of reasoning under investigation. This definitional void en-
ables shifting goalposts and leaves the construct validity of
reasoning evaluation unverifiable, obscuring clear progress

1What I cannot create, I do not understand.
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Position: AI Reasoning Requires Process Validity

toward human-level reasoning. Avoidance of formal defi-
nitions may owe to an implicit assumption that reasoning
is an intuitive concept requiring no explicit definition; eva-
sion of the hard work of devising operational definitions;
silent rejection of historical definitions from symbolic AI;
or (un)intentional conflation of benchmark accuracy with
reasoning itself. This position aims to make the danger of
such avoidance evident, and to suggest an alternative path.

Reasoning Zombies & Other Hard Problems The black-
box design and natural language interface of LRMs present
a nontrivial challenge: differentiating true reasoning from
reasoning-like speech. The latter represents superficial em-
ulation: talking like a reasoner with no guarantees that
conclusions arose from reasoning rather than memorization,
guessing, or some other man-behind-the-curtain (Mitchell,
2025a). This challenge is not unique to AI reasoning: par-
allels can be drawn to the hard task of human cognitive
testing and to distinguishing human-level intelligence from
sophisticated emulation, as canonized by the Turing Test
(Pinar Saygin et al., 2000). This problem evokes a rough
analog of the philosophical zombie (p-zombie) thought ex-
periment, which we term the reasoning zombie (r-zombie).
In the classic thought experiment, p-zombies are systems
that superficially behave like conscious beings, yet lack
any conscious internal experience (Chalmers, 1997; 2020).
Analogously, r-zombies are systems that superficially be-
have as autonomous reasoners, but lack valid internal
reasoning mechanisms. Perfect r-zombies, which behave
identically to true reasoners in all circumstances, remain
purely theoretical. However, we argue that (1) imperfect AI
r-zombies have already come into existence; (2) differenti-
ating AI r-zombies from AI reasoners is theoretically and,
often, empirically possible; and (3) we must responsibly
determine when real-world use cases require reasoners, and
when (im)perfect r-zombies suffice.

What This Position Is Our core theses (Fig. 1) follow
from two main problems.

P1 Reasoning in generative AI has experienced unnec-
essary and addressable definitional ambiguity, where
imprecise and overloaded definitions are often mis-
aligned with historical treatments of this topic (when
definitions are provided at all).

P2 This breeds mismeasurement, promotes an illusion of
shared understanding among researchers, and subverts
measurable progress toward trustworthy AI reasoning.

What This Position Is Not We do not claim that the
AI community must converge on one universal definition
for reasoning. We do not attempt to conclusively answer
whether LRMs are autonomous reasoners, nor the kind or
extent of reasoning they can perform. This position is not an
endorsement for or against symbolic AI, purely data-driven
approaches, nor neuro-symbolic AI. We do not make claims

about reasoning in natural intelligences, nor do we argue
that reasoning implies understanding or consciousness.

Contributions & Artifacts

1. An operational definition for reasoning as a learn-
able, rule-governed process. Based on a synthesis of
the literature, we introduce an operational definition
of AI reasoning for general use and community dis-
cussion (§2). Per Thesis 1, we express this definition
in (1) natural language for intuition; (2) mathematical
notation for concretization; and (3) pseudocode (Al-
gorithm 1). Operationalization is confirmed by trivial
Python implementations.2 We illustrate the application
of our definitions to special cases, including logical
deduction, Bayesian inference, reinforcement learning
(RL), and probabilistic next token prediction. In §3,
we address rebuttals to our definitions and theses.

2. Recommendations for scientific communication. We
propose a checklist of community guidelines that com-
plies with Thesis 1–Thesis 3 (Appendix A).

1.1. Problem Significance: Why Do We Care?

The import of P1 and P2 lies primarily in the following: (1)
reasoning is a necessary (but not sufficient) precondition
for artificial general intelligence (AGI); (2) AI evaluation
faces a construct validity crisis, which has spilled over into
reasoning evaluation; and (3) the rate of user uptake for
LRMs has outpaced evidence of trustworthy reasoning.

Reasoning is a Precondition for AGI Though con-
tentious, AGI is widely considered an implicit or explicit
north star for contemporary AI research (Blili-Hamelin et al.,
2025). However, lack of community consensus on the def-
inition and measurement of AGI hinders progress. A re-
cent effort to operationalize AGI promotes a taxonomy of
subcomponents and benchmark-based means of measuring
these (Hendrycks et al., 2025). Based on human cognitive
testing, this taxonomy emphasizes on-the-fly reasoning as
an essential component of measurable AGI. We agree with
Hendrycks et al. (2025) that the ability to reason is a neces-
sary (but not sufficient) precondition for AGI. An excess of
valuable use cases aside, this alone is sufficient to justify AI
reasoning as a critical area of inquiry. However, like AGI,
a shroud of ambiguity, confusion, and debate looms over
the definition and measurement of AI reasoning. Because
reasoning is a necessary precondition for AGI, measurable
progress toward clearly defined reasoning will be necessary
for measurable progress toward AGI. For example, we could
pose the open question: can an r-zombie, perfect or imper-
fect, ever achieve AGI? Whether the answer is positive or
negative, answering such questions will require theory and
methods for differentiating AI reasoners from r-zombies.

2https://github.com/jmaasch/valid reasoning

2

https://github.com/jmaasch/valid_reasoning


Position: AI Reasoning Requires Process Validity

Construct Validity is Underemphasized Recent waves
of generative AI tend to emphasize exploratory research and
empirical evaluations over hypothesis-driven confirmatory
research, proof of theoretical guarantees, or formal veri-
fication (Def. E.3) (Herrmann et al., 2024). Historically,
empirical fields have taken explicit precautions against mis-
measurement via construct validation (Cronbach & Meehl,
1955): justifying that experimental measures capture the
phenomena of interest by devising operational definitions
that relate latent abstract constructs (e.g., intelligence, bias,
ideology) to measurable real-world proxies. And yet, “va-
lidity and other quality criteria of empirical research have
gained little attention in ML so far” (Herrmann et al., 2024),
eliciting commentary that evaluation in natural language
understanding is largely “broken” (Bowman & Dahl, 2021)
and that AI evaluation must “mature into a proper ‘science”’
(Weidinger et al., 2025). Benchmarking with static datasets
is the standard framework for generative AI evaluation, but it
faces multiple crises, e.g.: poor construct validity (Wallach
et al., 2025; Alaa et al., 2025), data contamination (White
et al., 2025), overfitting, minimal quality control, gaming,
SOTA hacking, and selective reporting (Cheng et al., 2025).
We observe several points of risk for construct validity in
current reasoning evaluation strategies, including:

1. A process and its product should not be conflated.3 Rea-
soning benchmarks often treat question-answering (QA)
as a proxy for reasoning (Clark et al. 2018, inter alia).
However, final-answer accuracy does not guarantee the
mechanism by which the answer was generated (Zhang
et al., 2025). We contend that (i) reasoning is a pro-
cess and not an output (Figure 1), (ii) accurate QA final-
answers can be obtained by r-zombies via non-reasoning
behaviors, and thus (iii) accurate QA is not sufficient for
demonstrating that reasoning has taken place.

2. Chain-of-thought (CoT) is not trustworthy. If intermedi-
ate reasoning steps are evaluated, CoT “reasoning traces”
often serve as a stand-in for the LRM’s internal reason-
ing process. However, CoT is neither necessary nor
sufficient for obtaining trustworthy explanations (Barez
et al., 2025). Though attractively anthropomorphic, CoT
is not guaranteed to be faithful to the model’s internal
decision-making (Turpin et al., 2023; Lyu et al., 2023;
Lanham et al., 2023; Kambhampati et al., 2025; Zhang

3We echo Chollet (2019) on the risks of “confusing the process
of intelligence” (reasoning, in our case) “with the artifact produced
by this process” (e.g., QA responses), ignoring the generating
mechanism: “In the case of AI, the focus on achieving task-specific
performance while placing no conditions on how the system arrives
at this performance has led to systems that, despite performing
the target tasks well, largely do not feature the sort of human
intelligence that the field of AI set out to build” (original emphasis).
Simon (2000) similarly argued that a theory of bounded rationality
“will be as much concerned with... the quality of the processes of
decision, as with... the quality of the outcome.”

et al., 2025). Mid-CoT shifts (e.g., “aha!” moments) may
be rarer and less impactful than previously thought, re-
flecting unstable inference rather than true self-corrective
reasoning (d’Aliberti & Ribeiro, 2026). We contend that
an imperfect r-zombie could produce convincing but un-
trustworthy (or adversarial) CoT by emulating reasoning
structure rather than content (Li et al., 2025).

3. Reasoning evaluation should control for priors and ex-
perience. Echoing Chollet (2019) on the measure of
intelligence (Def. E.4), many reasoning benchmarks are
easily gamed by instilling near-unlimited priors and expe-
rience through large-scale pre- and post-training. This is
a core challenge in differentiating reasoning from recall
in LRMs (Hüyük et al., 2025; Xu et al., 2025; Maasch
et al., 2025a), raising the potential for r-zombies that
lack reasoning yet are SOTA on benchmarks.

Usership Outpaces Trustworthiness Science is funda-
mentally a “collective epistemic enterprise,” and as such,
epistemic trust (Def. E.5) underpins scientific integrity
(Wilholt, 2013). Epistemic trust in machine reasoning has
been championed most in mathematical domains, as epito-
mized by the Lean language for automated theorem proving
(De Moura et al., 2015). Lean addresses the “trust bottle-
neck” through formal verification, providing guarantees on
correctness (Castelvecchi, 2023). However, the shift from
deterministic systems and formal verification to probabilis-
tic generative AI has raised new specters for epistemic trust,
including evidence that hallucination is a feature and not a
bug (Xu et al., 2024; Bastounis et al., 2024), accuracy col-
lapse on tasks of scaling complexity (Shojaee et al., 2025),
poor out-of-distribution generalization (Chollet et al., 2024;
Mirzadeh et al., 2025; Xu et al., 2025), and low explain-
ability. LLM-hallucinated citations (Shmatko et al., 2025;
Sakai et al., 2026) and other sources of epistemic distrust
in peer review at flagship AI conferences has elicited calls
for reform (Kim et al., 2025). Rampant accusations of “AI
hype” (Placani, 2024; MIT, 2025) coincide with broader
linguistic trends: decreased hedging of uncertainty in sci-
entific communication (Yao et al., 2023a) mirrors trends
across diverse English text sources (Scheffer et al., 2021),
reflecting a normalization of language that exaggerates con-
fidence and obscures limitations. Meanwhile, 59% of AAAI
survey respondents agreed that AI trustworthiness remains
ill-defined, while 60% predicted that neither trustworthiness
nor factuality would be solved in the near future (Rossi et al.,
2025a). See Appendix D for further discussion.

2. Operationalizing Valid & Sound Reasoning
Defining reasoning is a nontrivial challenge spanning mil-
lenia (Appendix D.2). Broome (2013) admits that five years
of iterative self-correction were required to reach an un-
derstanding of reasoning. Thus, it is unsurprising that re-
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searchers can struggle to choose an authoritative, operational
definition that is tailored for use in contemporary AI.

As a step toward addressing P1 and P2, we provide working
definitions for reasoning that take a rule-centric perspective
while remaining amenable to ML (Thesis 1, Thesis 2). Defi-
nitions are a synthesis of prior efforts from diverse domains.
They are intended to be a starting point for discussion and a
community reference for those that require practical, opera-
tional definitions. We first address reasoning and reasoners
(§2.1) and then discuss validity and soundness (§2.3).

2.1. Working Definitions for Reasoning

2.1.1. INTUITION IN NATURAL LANGUAGE

We begin with a definition in plain English to establish
intuition. Colored terms denote core components.

Definition 2.1 (Reasoning, informal). The process of select-
ing and applying sequences of rules that act on prior beliefs
and current evidence to obtain principled belief updates in
evolving states.

Definition 2.2 (Reasoner, informal). A goal-oriented
decision-maker that implements reasoning.

This conceptualization is closely related to arguments by
Chollet (2019) that intelligence is a process and by Broome
(2013) that reasoning is a process, “something a person does”
(emphasis added), and a “rule-governed operation” (p. xii).
Framing reasoning as a sequential process implies a notion
of time t. We can conceptualize a time-dependent snapshot
of the reasoner’s internal world representation, which we
refer to as the state at time t.4

Definition 2.3 (State, informal). The set of all parameters
that are pertinent to the reasoner at time t, including some
subset of the historical record of beliefs, evidence, and rules.

We provide further intuition for each component of Def. 2.1.

PROCESS Reasoning is a dynamic process, not an output.
Thus, reasoning entails T ≥ 1 hops, stages, time steps, or
reasoning steps. This process implies a design component:
sequences of rules or actions are chosen by the reasoner
according to some justification. The process of selection
is where agency, intelligence, or creativity may come into
play, while the process of execution necessitates exactness
and rigor. Note that it may be perfectly reasonable for the
selection criterion to be random selection.

GOAL The reasoner generally executes a reasoning pro-

4Note that the state is not necessarily a world model as com-
monly conceived in RL or structural causal modeling (Richens &
Everitt, 2024; Richens et al., 2025; Maasch et al., 2025b): it is
not necessarily predictive of the dynamics governing an evolving
environment nor sufficient for causal identifiability. Further, it may
be only partially observed or partially stored in memory.

cess to achieve some outcome of interest. This outcome is
the goal one is reasoning toward: the answer to a complex
question, the solution to a puzzle, the shortest path through a
maze, a mathematical proof, the optimal action to take under
resource constraints, etc. In distinguishing the goal-directed
reasoner from the reasoning process itself, we highlight that
the validity of the reasoning process is not necessarily tied
to successful attainment of a goal. In practice, we can en-
code the goal in a stopping rule, where reasoning terminates
when the rule is satisfied. We do not restrict our notion of
goals to the formal sense used in RL (Sutton & Barto, 1998),
though it is compatible with this interpretation.

RULES Collectively, the rule set unambiguously maps the
reasoning state at t to the state at t+ 1. In general, rules are
selected with some justification prior to deployment. Rules
can take the form of algorithms, formulae, theorems, axioms,
laws, policies, premises, assumptions, decision boundaries,
etc. Rules can be extrinsically imposed on the reasoner
(i.e., hard-coded by another individual or collective agent,
such as a human or government) or they can be learned
autonomously from data on-the-fly. Rules can be fixed or
continuously updated in light of new information.

EVIDENCE We model evidence as a continuous stream
of data that is updated at each step t or at intervals. Current
evidence denotes information presented at t, along with the
historical record: aggregated information up to k ≥ 0 steps
prior to t. Evidence may be gained directly through sequen-
tial interactions with an uncertain environment (as in online
RL, field work in the natural sciences, etc.) or provided
without direct collection (e.g., retrospective data collected
by another agent). In trivial cases, external evidence is the
empty set or is provided at t = 0 and never updated.

PRIOR BELIEFS While evidence is a form of exogenous
or extrinsically obtained knowledge, we model beliefs as
a form of endogenous or intrinsically obtained knowledge.
Prior beliefs are the outputs of previous reasoning steps,
up to step t − k for t > k ≥ 1. They can be viewed as
intermediate conclusions along the reasoning pathway that
led to step t. Often, they are defeasible: they can be over-
written if proven false (e.g., in backtracking proof search),
refined if insufficient, or maintained and aggregated with
current beliefs at step t. They can also be provided at t = 0
(e.g., initializing Bayesian priors based on convention when
supporting evidence is not yet available). See Pearl (1990)
for another account of belief as informed by evidence.

CURRENT BELIEFS Current beliefs denote the conclu-
sions drawn in the transition from t− 1 to t. When t = T ,
current belief is equivalent to the terminal conclusion of the
reasoning process. The nature of the terminal conclusion
is a defining property of the type of reasoning performed,
e.g.: the output of a function in mathematical reasoning,
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an optimal action in practical reasoning, a moral verdict in
moral reasoning, a judiciary decision in legal reasoning, etc.

EVOLVING STATES A reasoner will generally maintain
an internal representation of its world state (Def. 2.3),
which updates over time. The existence of an external en-
vironment is also implied by our choice to model evidence
as a stream of extrinsic signals. However, we note that a
well-defined concept of external environment is not relevant
in all cases (e.g., in some mathematical reasoning domains).
Thus, we place no requirements on the existence or direct ob-
servability of an external environment, physical world, etc.,
and only require an internal representation of the world (i.e.,
the state). We use the notion of an evolving state broadly to
encode all of the above concepts: (1) dynamically updated
internal state representations, (2) changing and/or uncertain
external worlds, and (3) extrinsic sources of evidence.

2.1.2. A FORMAL OPERATIONAL DEFINITION

While natural language is useful for high-level intuition, it
is too ambiguous to formally convey measurable definitions
in the general case (Thesis 1). We offer a formalization of
Def. 2.1 in mathematical notation and pseudocode. While
Def. 2.4 is an operationalization of Def. 2.1, this is not the
only operational definition that could follow from Def. 2.1.
Definition 2.4 (Reasoning, formal). Let St := ⟨Bt, Et,Rt⟩
denote the reasoner’s state at time step t, where Bt denotes
current belief, Et denotes aggregated evidence up to time t,
and Rt denotes the current set of established rules. Then,
reasoning is the iterated application over steps t of rules
r ∈ Rt−1 to prior beliefs Bt−1 and current evidence Et, by
which we obtain dynamically updated states St, and where
every output Bt for t > 0 is the result of a rule application
r(Bt−1, Et) to the contents of state St−1.

Thus, rules and extrinsic evidence updates are the mech-
anism by which St changes over time: each r ∈ Rt is a
function acting on subsets of the current state St to generate
some attribute of the next state St+1.

Rule set R, beliefs B, and evidence E comprising state S
are each elements of a corresponding space R, B, E, and S.
R is a set of functions, with domains and ranges as defined
below. Other implementation details, constraints, and type
systems defining these spaces are problem-specific.
Definition 2.5 (Reasoning components).

t ∈ [0, ..., T ] Reasoning step.

{Bi}Ti=0, Bi ∈ B Beliefs.

{Ei}Ti=0, Ei ∈ E Evidence.

{Ri}Ti=0, Ri ∈ R Rule set.
Si := ⟨Bi, Ei,Ri⟩, Si ∈ S States.

The rule set is partitioned into two sets of functions with

distinct type signatures — local rules RL, which update
beliefs, and meta rulesRM , which update rules:

RL
t := {r ∈ Rt | r : B×E→ B}
RM

t := {r ∈ Rt | r : R×B×E→ R}

where RL
t ∩ RM

t = ∅ andRL
t ∪ RM

t = Rt. The rule set
may include identity rules, which trivially return the rules
or beliefs from time t at time t+ 1:

IM ∈ RM
1 such that IM (R,B, E) = R and

IL ∈ RL
1 such that IL(B, E) = B

for any (R,B, E) ∈ S. State updates St → St+1 are defined
by the receipt of new evidence Et+1, if any, followed by a
sequence of two5 rule applications:

Bt+1 = rL(Bt, Et+1) for some rL ∈ RL
t

Rt+1 = rM (Rt,Bt+1, Et+1) for some rM ∈ RM
t

St+1 := ⟨Rt+1,Bt+1, Et+1⟩.

In order to specify a reasoning algorithm (Algorithm 1), we
introduce the concept of a rule selector function. Because
these functions do not impact whether or not a process
constitutes reasoning, we define them separately in Def.
2.6, as part of the reasoner’s implementation of a reasoning
process. A full implementation may also involve additional
components, such as a goal (or “stopping rule”) and a trace
recording historical reasoning steps, as specified in Def. 2.6.

Definition 2.6 (Reasoner components). A reasoner can con-
tain or generate the following elements (among others),
which are extrinsic to the reasoning process itself.

sL : R×B×E→ RL Local rule selector.

sM : R×B×E→ RM Meta rule selector.
sstop : S→ {0, 1} Stopping rule.

tr : S×RL ×RM × S→ Σ∗ Trace writer.

T :=
{
tr

(
Si−1, r

L
i , r

M
i ,Si

)}T

i=1
Reasoning trace.

where rLi := sL(Rt,Bt, Et+1) and rMi := sM(Rt,Bt, Et+1).

Rule selectors use the current state’s rules and beliefs along
with any new evidence, and output a single rule. The black-
box nature of the rule selectors in Def. 2.6 is powerful: the
freedom to implement selectors in any way (hard-coding,
learning from data, or hybrid) is the bridge between sym-
bolic and ML interpretations of reasoning. The stopping
rule uses the current state to output a boolean expressing
whether or not to end the reasoning process. Often, the stop-
ping rule will encode the end-goal of reasoning, evoking
the goal-directed nature of a reasoner under Def. 2.2. The

5Multiple belief updates in immediate sequence can be imple-
mented by setting the corresponding rule updates to the identity.
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Algorithm 1 Valid reasoning as exact rule application.

Input. Initial rulesR0, beliefs B0, evidence stream {Ei}Ti=1.

R,B, E ← R0,B0, E0
S ← (R,B, E)
t← 0
while not sstop(S) do
E ′ ← Et+1

rL ← sL(R,B, E ′) {Select local rule.}
B′ ← rL(B, E ′) {Apply local rule, update beliefs.}
rM ← sM(R,B′, E ′) {Select meta rule.}
R′ ← rM (R,B′, E ′) {Apply meta rule, update rules.}
S ′ ← (R′,B′, E ′)
T .append(tr(S, rL, rM ,S ′)) {Update trace.}
R,B, E ,S ← R′,B′, E ′,S ′

t += 1
end while
Return B, T

trace writer considers the selected rules and resulting state
change, and optionally outputs a string (using alphabet Σ)
to include in the reasoning trace.

With these definitions in place, we describe a generalized
reasoning algorithm in Algorithm 1.

Remark 2.1 (How is Definition 2.4 operational?). Opera-
tionalization of Def 2.4 and Algorithm 1 is confirmed by
Python implementation.6 In general, the onus is on the
researcher to map the core components of Def 2.4 to the
unique problem setting, justify the absence of any com-
ponents, and confirm that process validity is present. We
provide a checklist of best practices in Appendix A.

2.2. Examples from Domain-Specific Reasoning

Defs. 2.1 and 2.4 are intentionally broad, and indeed a large
number of phenomena could be said to satisfy them. To
illustrate their flexibility, we map them to specific forms of
reasoning that are commonly encountered in mathematics,
computer science, and AI. We consider these specific forms
of reasoning to be special cases of Def. 2.4 that vary in how
rules, beliefs, and evidence are defined or obtained. See
Appendix B for additional examples. Table B.1 compares
all examples by the nature of rules, beliefs, and evidence.
For strong examples of operational definitions for reasoning
in mathematics, see Defs. 1 and 2 in Zhang et al. (2025).

Example 2.1 (Logical deduction). Our framework is heav-
ily inspired by deductive systems (e.g., Hilbert systems,
sequent calculi, natural deduction, or resolution calculi)
over classical first-order logic, although it is not limited to
these settings.7 Concretely, a natural deductive system over

6https://github.com/jmaasch/valid reasoning
7Deductive systems encompass proof systems and formal se-

mantics for zeroth, first, and higher-order logics, and additionally
form the basis for automated theorem provers, SMT solvers, and
proof assistants; each of which satisfy Def. 2.4.

a formal language is initialized with a set of premises Γ,
and a static set of inference rules (e.g., modus ponens or
modus tollens) acting on premises. A derivation (deduction)
of a conclusion φ is a finite sequence of premises where
each is either in Γ, or obtained from earlier formulas in
the sequence by application of an inference rule. If such a
derivation exists, φ satisfies the consequence relation Γ ⊢ φ.
Derivations yield a monotonically increasing belief set in
the closure of Γ under the logical consequence relation.

We note that natural deductive systems are a highly restricted
instantiation of Def. 2.4, such that no new evidence is
provided (Ei = ∅ ∀ i), and the set of inference rules is fixed
(RM

i = {IL} ∀ i). Logical systems other than classical
first-order logic can also be expressed under Def. 2.4; see,
for example, nonmonotonic logic in Appendix B.1, which
allows for principled belief retraction.

Example 2.2 (Bayesian inference). Bayesian inference pro-
vides principled means of revising beliefs in hypotheses
as new evidence emerges. We iteratively refine posterior
estimate p(θ | D) for unknown parameters θ by repeatedly
applying Bayes’ rule (Equation 1) as our prior over θ and
observed data D update across time t:

rbayes :=

{
p(θ | D) = p(D | θ) p(θ)

p(D)

}
. (1)

Conclusion p(θ | D) is always valid when rbayes is applied,
though it might be biased with respect to ground truth.

Example 2.3 (Reinforcement learning). RL is the ML
paradigm concerned with training optimal goal-directed
decision-makers (i.e., agents) through sequential interac-
tions with an uncertain environment. The agent learns a
policy that maps states to actions. Thus, the RL agent meets
our informal definition of a goal-oriented reasoner (Def.
2.2). Update rules in RL often take the following form
(Sutton & Barto 1998, p. 37):

rupdate := φnew ← φold + α(τ − φold) (2)

where φ is some estimate, α is step size, τ is the target or
a desirable (yet perhaps noisy) direction (e.g., the reward),
and (τ − φold) is an estimation error. For example, we can
estimate the agent’s reward for some action at step t+ 1 as

Qt+1 =
1

t

t∑
i=1

Ri = Qt +
1

t
[Rt −Qt] (3)

where Qt is the estimated tth reward (prior belief) and Rt

is the observed tth reward (evidence).

2.3. Validity & Soundness

We now elaborate on valid and sound reasoning. Validity
is meant to replace our heuristic use of true reasoning with
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a more concrete concept: any superficially reasoning-like
behavior that does not satisfy Def. 2.7 is not reasoning,
though it may be useful reasoning emulation.

Definition 2.7 (Validity). A transition from state St to St+1

is valid if and only if it arises from the application of a rule
r ∈ Rt to components of state St.

Following from Def. 2.7, we claim the following.

Claim 2.1 (Valid reasoning arises from exact rule applica-
tion). Validity requires that each rule is always executed ex-
actly: not partially, not approximately, not sometimes. This
does not preclude rule-based means of handling stochastic-
ity, uncertainty, and approximate inference.

We can use Def. 2.7 to further clarify our definition of an
r-zombie: a system that generates reasoning-like output
but lacks the mechanisms necessary for validity. Claim
2.1 is in line with treatments in symbolic AI, as well as
recent work toward LRM reasoning and AGI: Zhang et al.
(2025) claim that “operations must be exact” in reasoning
(original emphasis), while György et al. (2025) argue for a
shift away from statistical learning toward exact learning
to address LRM “jagged intelligence” (Grand et al., 2025).
See Objection 3.1 and Appendix D.2 for further discussion
of the history and revival of rule-based reasoning.

Unlike valid reasoning, soundness requires a notion of cor-
rectness or alignment with respect to external assessments.

Definition 2.8 (Soundness). A valid transition from state
St to St+1 is sound if and only if all premises (as encoded
by B,R, and E) are true with respect to external evaluation.

Validity and soundness are classically used to evaluate logi-
cal arguments. While sound reasoning is always valid, valid
reasoning need not be sound. This gives way to Claim 2.2.

Claim 2.2 (Validity is independent of rule selection). Im-
plementing a reasoning process requires selecting which
specific rule to apply at each step. Because validity is in-
dependent of soundness, and any properly-typed rule ap-
plication creates a valid output, the validity of a reasoning
process is independent of the algorithm used to select the
rule sequence, regardless of external ground truth.

Claim 2.2 echoes Broome’s (2013) correctness-by-
permissibility: “ Correct reasoning is not reasoning you
are required to do by rationality, but reasoning you are
permitted to do by rationality” (p. xii; emphasis added).
Emphasizing validity over soundness allows for bounded
rationality in reasoning, where incomplete information and
uncertainty can lead the reasoner’s conclusions to be “as
much determined by the ‘inner environment’ [our notion
of state]... as by the ‘outer environment”’ (Simon, 2000).
Claim 2.2 highlights that validity says nothing of the opti-
mality, usefulness, nor external correctness of the reasoning

process, and indeed, ground truth may not exist.8 For ex-
ample, the rule selector could select rules at random, act
adversarially, or always return the identity function, and yet
the process would still be valid.

2.4. Implications of Definition 2.4

Claim 2.3 (Rules are learnable). We contend that rule-
governed reasoning and data-driven models are not mutually
exclusive, and we reject the false dichotomy between rule-
based symbolic AI and contemporary probabilistic deep
learning (as summarized in Appendix D.2). Learnable rules
are essential for tying Def. 2.4 to modern AI and the bitter
lesson (Sutton, 2019): rules do not need to be hard-coded
by human domain experts, and the future of autonomous
reasoning will likely include systems that learn rules and
defeasible beliefs on-the-fly. See Oh et al. (2025), in which
an artificial agent autonomously discovered a SOTA RL rule
that outperformed human-designed rules.
Claim 2.4 (Rules are explanations). The explainability of
a reasoning process lies in the rule set, as rules are the
justifications by which each intermediate reasoning step
is executed. In this conceptualization, rules themselves
are explanations for how the reasoner reached conclusions.
By extension, the absence or unobservability of a rule set
results in poor explainability. We contrast this notion of
rules-as-explanations with CoT, which is neither necessary
nor sufficient for explainability (see §1.1).
Claim 2.5 (Operationalization facilitates trust). A central
aspect of trust is the accurate representation of the capabil-
ities or expected behavior of a system (Kaur et al., 2022).
Validity formalizes an expectation found in many common
definitions of reasoning (see Appendix C for further discus-
sion). Claims of “reasoning” applied to models which fail to
meet a minimal bar of validity thus endanger trust. Similarly,
claims about “reasoning” without a clear operationalization
of the term leave validity and soundness unfalsifiable.
Claim 2.6 (Reasoning requires memory). Notions of prior
beliefs, evidence, and rules imply the existence of memory,
as this body of information must be stored and recalled. This
does not preclude special cases of memoryless or Marko-
vian reasoning processes where all information needed at
step t is contained in St−1, as these rely on a persistent
representation of the immediately preceding state. Several
proposals for autonomous machine intelligence (LeCun,

8The import of Claim 2.2 is clear in settings where there is no
singular objective truth, as it permits disagreement and subjectivity.
Consider pluralism in moral reasoning (Snoswell et al., 2026): two
moral actors with conflicting moral frameworks could both be said
to validly reason even if their moral conclusions differ, as long as
both exactly apply their respective moral rules. Plurality can also
arise in sound reasoning: a single problem often admits multiple
sound reasoning paths (Wang et al., 2023), though some paths may
be more useful; see González & Nori (2024) and Maasch et al.
(2025a), which use commutative diagrams to model this case.
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2022), AGI (Hendrycks et al., 2025), and transformer-based
LRMs (Cheng et al., 2026) explicitly emphasize memory or
persistent state as a core component of intelligent behavior.
Claim 2.7 (Natural language is not necessary for reasoning).
Defs. 2.1 and 2.4 do not imply a necessary role of natural
language in AI reasoning. Similarly, Broome (2013) does
not assume that natural language is necessary for human
reasoning. Evidence from neuroscience suggests that lan-
guage may not be required for complex symbolic thought
(Fedorenko et al., 2024), deductive reasoning (Coetzee et al.,
2022), nor mathematical and logical reasoning (Fedorenko
& Varley, 2016). Increasing, neural methods explore rea-
soning in latent space rather than language space (Hao et al.
2025; Zhu et al. 2025; Wang et al. 2025; inter alia).

3. Alternative Views
See Appendix C for an extended discussion of alterna-
tive definitions for reasoning from diverse domains. Here,
we comment on mainstream objections to our core theses.
While Objection 3.1 argues that this perspective won’t work,
Objection 3.2 argues that this perspective isn’t needed.
Objection 3.1. (1) Def. 2.4 violates Sutton’s bitter lesson
(Sutton, 2019), (2) symbolic AI has already failed, and (3)
scaling is all you need. We observe several variations of
these arguments on rule-based systems, which rightfully
highlight the knowledge acquisition bottlenecks and lack
of generalization in classical expert systems. Rebuttal:
Points (1) and (2) are false, and (3) is speculative. We
acknowledge the historical context of an “AI winter” follow-
ing the “first wave” of AI, in contrast to the groundbreaking
successes of AI’s “second wave” (Fouse et al. 2020; Ap-
pendix D.2). We understand that this context may raise
skepticism about the feasibility of designing systems that
meet our standard of process validity. However, we con-
tend that our theses are compatible with symbolic methods,
ML, and neuro-symbolic AI. Per Claim 2.3, the learnability
of rules makes Def. 2.4 amenable to contemporary ML.
Because Def. 2.4 does not require hardcoding nor injec-
tion of human domain expertise, it is not incompatible with
the bitter lesson. Though recent advances in generative AI
are compelling, outright rejection of symbolic methods is
throwing the baby out with the bathwater, while claiming
that symbolic methods have failed is forgetting history. See
Lean, a symbolic system for gold-standard automated theo-
rem proving (De Moura et al., 2015); the neuro-symbolic
AlphaGeometry 2 (Chervonyi et al., 2025) and AlphaProof
(Hubert et al., 2025), which can solve Olympiad-level math;
inter alia. While scaling model parameters, data size, and
inference-time compute has resulted in profound perfor-
mance gains (Kaplan et al., 2020; Bi et al., 2024; Muen-
nighoff et al., 2025), it remains pure speculation whether
scaling is sufficient to reach various goals. Scale has not
yet resolved hallucination, explainability, out-of-distribution

generalization, or other factors that undermine trustworthy
reasoning. A AAAI survey found that 76% of respondents
believed “scaling up current AI approaches” was “unlikely”
to “very unlikely” to produce AGI (Rossi et al., 2025a).

Objection 3.2. Empirical performance matters more than
theoretical guarantees, so rule-based validity is a waste of
time. We observe a common argument that (1) benchmark
accuracy is a sufficient proxy for reasoning and (2) if em-
pirical evaluations yield consistently high scores, then the
underlying process is of lesser concern. Rebuttal: Some-
times yes, sometimes no. Circling back to the discussion
in §1, an essential task in contemporary AI will be thought-
fully delineating where reasoners are required and where
(im)perfect r-zombies are sufficient. Relatedly, “How deep
and how reliable does the reasoning have to be in order
to do certain important things?” (Holger Hoos in Rossi
et al. 2025b). Indeed, sometimes “the best is the enemy
of the good” and “optimizing is the enemy of satisficing”
(Simon, 2000). However, the fallibility of empirical eval-
uation becomes especially problematic under distribution
shift, rare events, adversarial attack, and safety-critical or
high-stakes domains. As discussed in §1.1, benchmarks
have finite coverage and are prone to design flaws (Wallach
et al., 2025; Alaa et al., 2025; White et al., 2025; Cheng
et al., 2025), including the conflation of process (reason-
ing) with the product of that process (QA accuracy, etc.)
(Chollet, 2019). As commonly held in formal logic, we
hold validity as a prerequisite for soundness (Def. 2.8), so
any domain requiring external correctness will require va-
lidity guarantees. We contend that many scientifically and
economically important use cases require validity, includ-
ing many decision-making systems with safety or fairness
implications (e.g., in medicine, policing, etc.).

4. Conclusion: A Call to Action
Based on a synthesis of the literature, we propose an op-
erational definition for rule-based reasoning that remains
amenable to modern ML. However, this is not the only oper-
ational definition that can provide research value. We urge
the community to engage with our definitions and claims,
identify shortcomings, and propose alternatives. We en-
courage applying our checklist of best practices (Appendix
A) to any reasoning-related research or product commu-
nication, with a particular focus on domain-specific oper-
ationalization. We recommend that researchers and mar-
keting professionals alike refrain from using “reasoning”
to describe processes which fall short of the standard
of process validity and instead reference formalizations of
reasoning emulation (e.g., r-zombies). We further call AI re-
searchers and engineers to prioritize trustworthy reasoning
in future research and product releases. Echoing calls for
“interpretability by design” in mechanistic interpretability
(Sharkey et al., 2025), we strongly encourage researchers
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to build AI reasoning systems with validity by design, par-
ticularly in domain-specific settings where process validity
is legally, ethically, practically, or mathematically mandated.
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Wieser, E., Huang, A., Schrittwieser, J., Schroecker, Y.,
Masoom, H., et al. Olympiad-level formal mathematical
reasoning with reinforcement learning. Nature, pp. 1–3,
2025.

Humphrey, R. Stream of Sonsciousness in the Modern Novel,
volume 3. University of California Press, 1954.
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Appendix
A. Checklist: Community Guidelines for Scientific Communication in AI Reasoning Research

REASONING RESEARCH CHECKLIST

1. Definition: Reasoning, Reasoners & Their Components

□ 1.1 Reasoning is framed as a process, distinct from any artifact produced by that process.
□ 1.2 A formal, operational, and domain-specific definition of reasoning is provided.
□ 1.3 Each essential component in Defs. 2.1 and 2.4 is explicitly defined for the problem setting, where applicable: process,

rules, beliefs, evidence, and state. Absence of a component or presence of alternative components is explicitly justified.
□ 1.4 Sources of extrinsic evidence are reported.
□ 1.5 Research clearly defines the state, if and how it is recorded in memory, and how it is retrieved.
□ 1.6 Research clearly reports how reasoning steps are selected, searched for, trialed, etc. If rules are selected by search, the

search space and search procedure are defined.
□ 1.7 Implementation details for all mechanisms of exact rule application are provided.
□ 1.8 Can the system be formally characterized as a goal-directed decision-maker that implements a reasoning procedure (a

reasoner, Def. 2.2), or is the system limited to the reasoning procedure itself?
□ 1.9 When a distinct reasoner entity is present, its components are clearly described and its goal is operationally defined.

2. Reasoning Process Validity

□ 2.1 Validity is defined w.r.t exact rule application, per Def. 2.7. Alternative definitions of validity are rigorously justified.
□ 2.2 Conditions for valid transitions St → St+1 and exact versus approximate execution are stated.
□ 2.3 Is each new belief provably obtained by exact rule application, or by some other mechanism? In the absence of proof,

hypotheses should be provided.
□ 2.4 Research clearly reports the provenance of rules and rule updates.

• Are rules learned, or axiomatic?
• Are rules defined in collaboration with domain experts?
• Are rules continuously updatable? When meta rules exist, how exactly are rule updates obtained?

□ 2.5 Potential sources of error are explained, along with means for identifying and preventing invalid reasoning steps.
□ 2.6 All theoretical guarantees on validity are formally proven, including formal bounds on performance. Absence of

guarantees is clearly stated and justified, and supported by rigorous empirics.

3. Evaluation & Construct Validity

□ 3.1 The construct validity of all evaluation methods is explicitly justified w.r.t. the operational definitions under use.
• If evaluation relies on “reasoning tasks,” what exactly constitutes a task? How does it capture reasoning behaviors?
• Is soundness w.r.t. some external ground truth or preference relevant in this setting? How is it measured?
• Are the validity, soundness, etc., of intermediate reasoning steps verified, and if so, how?

□ 3.2 Evaluations must clearly address the distinction between the reasoning process (relative to internal generating
mechanisms) versus the artifacts of that process (e.g., QA outputs). Tasks and metrics must measure both process
quality and output quality.

4. Utility, Explainability & Trustworthiness

□ 4.1 Uses and limitations of the system are clearly defined.
□ 4.2 Potential harms from use or misuse of the system are addressed.
□ 4.3 All sources of explainability are described, and any absence of explainability is directly justified.

• What role do reasoning traces play, what form do they take, and how observable are they to the user?
• Is the reasoning trace theoretically guaranteed to accurately reflect the model’s internal process? If not, what

reasonable expectations of faithfulness are possible?
□ 4.4 The operational definition of reasoning met by the system matches the intended use case. If it falls short, the alignment

discrepancy is clearly and thoroughly communicated.
□ 4.5 The system implements a useful, nontrivial reasoning process beyond standard ML inference, where usefulness is

contextually defined w.r.t. the deployment setting.
□ 4.6 Reported findings refrain from excessive or misleading claims, especially in title, abstract, public reporting to lay

audiences, and marketing.
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B. Domain-Specific Reasoning, Continued
Example B.1 (Nonmonotonic reasoning). In this example,
we consider nonmonotonic (or defeasible) logic, which adds
a mechanism for principled belief retraction and revision to
classical logic (Strasser & Antonelli, 2001).

Nonmonotonic reasoning describes a process of deduction
and revision which admits both strict (static) and defeasible
(modifiable) rules, including rules governing belief retrac-
tion, priority, and conflict-resolution. New, non-defeasible
information available at time t, as well as observed contra-
dictions within the current belief state may trigger retrac-
tions or updates (via rule application) to prior beliefs and
existing rules. This results in a nonmononically updating
belief state, in which a conclusion φ derived at time t may
fail to hold at time t′ > t.

Next, we consider a trivial case of reasoning where rules are
hard-coded and evidence is the empty set.

Example B.2 (Hard-coded algorithm). A hard-coded al-
gorithm, as represented by a finite, deterministic Turing
machineM, can be considered as a reasoning process with
a static rule set, such that exactly one applicable local rule
(and no meta rules) exist for any given state. At every time
step t following an initial instantiation,M executes a fixed
procedure: read the tape symbol under the head, consult a
transition table to determine the single applicable rule given
the current state, then write a symbol, move left or right,
and change state or halt.

As in deductive reasoning, new evidence is not provided
during the reasoning process. Furthermore, all rule selectors
are trivial, as only a single state transition is valid at any
time step, and the conclusion is always the belief state if
and whenM halts.

Example B.2 illustrates that the ability of a system to map
to the formal definition of reasoning is not necessarily
meaningful in itself. Useful reasoning will usually require
some kind of alignment with user preferences, resource con-
straints, requirements on soundness, or other details of the
unique problem setting. For example, a hard-coded algo-
rithm that responds to every input query with the answer
“4” vacuously meets the standard of rigorous rule applica-
tion, but fails to align with a domain-specific setting where
soundness requires accurate answers to arithmetic queries.

Example B.3 (Probabilistic next token prediction). This
example presents a form of autoregressive probabilistic rea-
soning over natural language. Consider the n-gram lan-
guage model that maximizes the probability p(w | h) of
token w given the history h of tokens preceding w (Jurafsky
& Martin, 2025). Rule set Rt encodes assumptions over
the number of relevant preceding tokens in h, along with
formulae for valid estimation. For example, we can define

Rt as the set containing

p(w1:n) =

n∏
t=1

p(wt | w1:t−1) (4)

p(wt | w1:t−1) ≈ p(wt | wt−1) (5)

p(wt | wt−1) =
C(wt−1wt)∑
w′ C(wt−1w′)

(6)

≈ C(wt−1, wt)

C(wt−1)

ŵt = argmax
wt

p(wt | wt−1) (7)

where Equation 4 is the chain rule of probability, Equa-
tion 5 is the Markov assumption, Equation 6 is maximum
likelihood estimation and its simplification per the Markov
assumption, and Equation 7 predicts the most likely next
token. Thus, we can compute the maximum likelihood for
p(w | h) by taking the count C of n-grams beginning with h
and terminating with w in the training corpus, normalized by
the sum of counts for any n-gram beginning with h. Iterat-
ing the prediction procedure (Equation 7), we can extend the
length of the output text one token at a time. Current belief
at step t is ŵt and prior beliefs (intermediate conclusions)
are ŵt−1, as these are generated by the predictor. The final
string ŵ1:n can be framed as the terminal conclusion. The
initial token(s) (or context, as in LLMs) can be framed as
evidence, as these are extrinsically provided to the predictor.

Reasoning validity in Example B.3 arises from the exact
application of Rt, which says nothing of soundness (e.g.,
the factuality of ŵ1:n). It is clear thatRt is agnostic to factu-
ality, as truth is not necessarily high probability (e.g., some
factual statements describe extremely rare events, such that
their constituent tokens are unlikely to coincide frequently
in a text corpus). Even if the final string contains misin-
formation (as often occurs with hallucinations in LLMs, a
more complex instantiation of next token prediction), the
probabilistic reasoning expressed in Example B.3 would be
valid under Def. 2.7. The important question is whether
this validity rule is sound for the desired application. If
soundness through factuality were necessary for the end
user, additional constraints would need to be encoded inRt.

Table B.1 provides a summary of all domain-specific
examples presented in this paper.

C. Alternative Definitions for AI Reasoning
Given the expansive range of phenomena that could satisfy
our working definitions, what phenomena do not satisfy
Defs. 2.1 and 2.4?

We review popular alternative viewpoints on what consti-
tutes reasoning here. We discuss whether these alternative
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Example Beliefs Bt Evidence Et RulesRt Goal / Conclusion

Logical deduction Derived formulas in the
proof state Γ.

Premises E0 are given at
t = 0 and not updated
thereafter.

Fixed inference rules
(e.g., modus ponens,
introduction/elimination
rules)

Derive a target formula
φ such that Γ ⊢ φ.

Bayesian inference Current posterior p(θ |
D1:t)

Newly observed data Dt

(possibly aggregated with
prior observations).

Bayes’ rule and any aux-
iliary update rules (e.g.,
conjugate prior updates,
approximation schemes).

Obtain updated poste-
rior beliefs p(θ | D1:t).

Reinforcement
learning

Current value function
estimates, policy param-
eters, and internal state
representations.

Observed environment
states, state transitions,
and rewards obtained
by interaction with the
environment.

Update rules such as tem-
poral difference or policy
gradient updates, plus any
meta rules adapting learn-
ing rates or architectures.

Learn a policy that
maximizes expected re-
turn (i.e., select approx-
imately optimal actions
over time).

Nonmonotonic
logic

Current set of accepted
conclusions, including
defeasible ones.

New information that
may conflict with exist-
ing conclusions (e.g.,
exceptions, defaults).

Nonmonotonic inference
rules that support belief
revision and retraction,
plus meta rules for revis-
ing the rule set itself.

Maintain a coherent,
defeasible belief set that
updates appropriately
under new, possibly
contradictory evidence.

Turing machine Current configuration of
the machine: tape con-
tents σt ∈ Σ∗, head
position ht, and control
state qt ∈ Q, collec-
tively encoded as Bt =
⟨σt, ht, qt⟩.

Input word w ∈ Σ∗ (typi-
cally fixed at t = 0).

Transition relation or
function δt : Q × Σ →
Q× Σ× {L,R}.

Compute the value of
a (partial) function f :
Σ∗ ⇀ Σ∗ on input w,
i.e., reach a halting con-
figuration with output
tape σT such that σT en-
codes f(w).

Probabilistic next-
token prediction

Current token given
prior tokens.

Token(s) provided at ini-
tialization (e.g., the first
word of a sentence, the
prompt to an instruction-
tuned LLM, etc.).

Probability rules (e.g.,
chain rule), structural as-
sumptions (e.g., Marko-
vianity), maximum likeli-
hood formulae.

Iterate procedure un-
til query is answered
(e.g., string is of desired
length, etc.).

Table B.1. Example instantiations of St = ⟨Bt, Et,Rt⟩ for the domain-specific reasoning examples in §2.2 and Appendix B.

definitions are operational and whether they satisfy Defs.
2.1 and 2.4. Per P1, it is not unusual for papers on reasoning
to avoid defining reasoning at all. Thus, some of the alterna-
tive definitions discussed here are those that we deem to be
implied by a subset of the literature, if not explicitly stated.
While some alternative definitions provided here partially
overlap with Defs. 2.1 and 2.4 and may provide research
value in some settings, none feature every core component
of our operational definitions (per colored highlighting).

We begin with the dictionary. Testament to the hardness of
defining latent constructs like reasoning, even dictionaries
can be ambiguous. Consider the self-referential definitions
found in Merriam Webster (the oldest and most authoritative
American English dictionary), which also conflate reason
and another latent construct: intelligence.

Alternative Definition C.1 (Reasoning, Merriam-Webster
2026). Reasoning, noun. The use of reason; the drawing of
inferences or conclusions through the use of reason.
Reason, verb. To use the faculty of reason so as to arrive at
conclusions; to discover, formulate, or conclude by the use
of reason; to persuade or influence by the use of reason.

Reason, noun. The power of comprehending, inferring, or
thinking especially in orderly rational ways; intelligence;
proper exercise of the mind; the sum of intellectual powers.

This definition is not operational in multiple senses: how
would one measure the “power of comprehending,” the
“sum of intellectual powers,” or “orderly rational ways”?
While this definition frames reasoning as a form of infer-
ence (which we do not disagree with), it does not address
the substrates on which inference is performed (extrinsic
evidence, prior beliefs, etc.) nor any concrete mechanisms
by which inference is executed (exact rule application, etc.).

The Stanford Encyclopedia of Philosophy (SEP) does not
provide a single authoritative definition, with definitions
varying across articles.

Alternative Definition C.2 (Reasoning, Richardson 2018
in SEP). “Active or explicit thinking, in which the rea-
soner, responsibly guided by her assessments of her reasons
(Kolodny, 2005) and of any applicable requirements of ra-
tionality (Broome, 2009; 2013), attempts to reach a well-
supported answer to a well-defined question (Hieronymi,
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2013).”

Alternative Definition C.3 (Automated reasoning, Por-
toraro 2025 in SEP). “Reasoning is the ability to make
inferences... [by] proving the conclusion from the given
assumptions by the systematic application of rules of deduc-
tion embedded within the reasoning program.”

Alternative Def. C.2 contains too many ambiguities to be
easily operationalized (“responsibly guided by her assess-
ments”, “requirements of rationality”, “well-supported”,
etc.). Further, Alternative Def. C.2 invokes Broome’s no-
tion of rational requirement, which Broome (2013) replaced
with rational permissibility (a stance that we also take in
this position; §2.3). Alternative Def. C.3 is clearer, and
contains some ingredients from operational Def. 2.4: con-
clusions drawn by the systematic application of rules as
embedded in the reasoning program implies (1) a sequential
process of exact rule application and (2) process validity,
correctness-by-permissibility, etc. Assumptions might en-
compass evidence, prior beliefs, and/or some forms of rules,
though this is unclear. Sources of extrinsic evidence are not
directly addressed. This definition also departs from ours in
casting reasoning as an ability rather than a process.

Our informal Def. 2.1 closely resembles the definition pro-
posed by Wang et al. (2025):

Alternative Definition C.4 (Reasoning, Wang et al. 2025).
The process of devising and executing complex goal-
oriented action sequences.

Like Defs. 2.1 and 2.4, Alternative Def. C.4 frames rea-
soning as a sequential process. We can map “action se-
quences” to our concept of rule sequences: both act on
evolving streams of intrinsic and/or extrinsic information
and result in updates to the state. Defs. 2.1 and 2.4 make
this even more explicit: rules act on prior beliefs and current
evidence, and output updated beliefs about the state. We
can then map the concept of devising action sequences to
selecting rule sequences. However, Alternative Def. C.4
does not explicitly delineate sources of extrinsic information
(evidence), nor define concepts comparable to belief and
state. Wang et al. (2025) depart from Defs. 2.1 and 2.4 by
placing goal-orientedness within the definition of reasoning.
We present an alternative view where reasoning itself has
no goal, but may be executed by a goal-directed decision-
maker (the reasoner, Def. 2.2). This distinction might or
might not have consequences for research. Additionally,
Wang et al. (2025) explicitly invoke complexity (without a
concrete threshold for what constitutes complex), while our
definitions intentionally admit trivial cases.

The following two definitions are also similar to Defs. 2.1
and 2.4, but (1) are not clearly operational and (2) are overly
specialized to human cognition (using anthropocentric lan-
guage like “mental process,” “thinking,” etc.), which is of

unclear value for designing automated systems.

Alternative Definition C.5 (Reasoning, Broome 2013).
Reasoning is a mental process in which you operate on
the contents of your attitudes, following a rule.

Alternative Definition C.6 (Reasoning, Huang & Chang
2023). Reasoning is the process of thinking about some-
thing in a logical and systematic way, using evidence and
past experiences to reach a conclusion or make a decision.

The “contents of your attitudes“ in Alternative Def. C.5
could encompass intrinsic beliefs and/or extrinsic evidence,
but this is unclear. Alternative Def. C.6 notes evidence, but
it is unclear how “past experiences” differ from evidence
(where the latter can, in our conceptualization, be derived
from interactions with the environment – i.e., experiences).
Unlike Alternative Def. C.5, Alternative Def. C.6 does not
explicitly invoke rules (though logical rules may be ambigu-
ously implied by “a logical and systematic way”). We view
these definitions as non-operational, as they leave many
questions open: What qualifies as “logical” and “system-
atic”? Which logic system is being used? And what does it
mean to “operate” on the “contents of your attitudes”? Our
formal definition makes these notions more concrete.

Note that no components of Defs. 2.1 and 2.4 are explicitly
present in the remaining alternative definitions discussed
below (per colored highlighting).

Alternative Definition C.7. Reasoning is guided search.

Contemporary LRMs frequently employ search heuristics
that enable exploration or deliberation over the solution
space, often with self-evaluation (Yao et al., 2023b; Xie
et al., 2023; Grand et al., 2025). We observe that the perfor-
mance gains conferred by these heuristics may contribute
toward the conflation of search and reasoning itself. Indeed,
the relationship between search and reasoning is significant.
Relatedly, a recent AAAI survey found that 44.7% of re-
spondents agreed that “reasoning involves a search process”
(Rossi et al., 2025a). While we agree that search can be an
effective means of facilitating reasoning, it is not necessary
for reasoning and is not reasoning in and of itself. To clarify,
we quote Simon (1983):

The same problem-solving algorithm can be
viewed, now as search, now as reasoning [...]
Consider, for example, a simple theorem-proving
program that works forward from a set of axioms,
applying its rules of inference to these to obtain
new expressions that can be added to the axiom
set. When it finishes tracing a path to a desired
theorem, it has succeeded. Clearly it is a search
algorithm. At the same time, the theorem prover
is adding, at each step of its search, new propo-
sitions that follow logically from its axioms. It
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is gradually accumulating a larger and larger col-
lection of deduced propositions. Clearly it is rea-
soning. [...] The search and constraint metaphors
focus upon the process of finding the problem
solution, while the reasoning metaphor focuses
upon the logical validity of the linkage between
initial problem state and solution. Search is cen-
trally concerned with discovery, reasoning with
proof (Simon, 1983).

Many principled search procedures can be framed as spe-
cial cases of Def. 2.4, and discovery-via-search can be an
effective strategy or subroutine for implementing proof-by-
reasoning in some settings. However, many counterexam-
ples exist where reasoning does not entail any search process
(e.g., Example B.2). Thus, we conclude that (1) search is
not necessary for reasoning; (2) the definition of search does
not equate to a general operational definition for reasoning,
as accomplished with Def. 2.4; and (3) we caution against
conflating the two in the general case.

Alternative Definition C.8. Reasoning is chain-of-thought.

Following from Claim 2.7, we contend that CoT is a mode
of expression and a strategy for eliciting higher quality out-
puts from LLMs (Wei et al., 2022b), but is not reasoning in
itself. Consider the many counterexamples of reasoning that
do not require natural language CoT, neither for execution
nor for the communication of results (e.g., Example 2.1 and
the other domain-specific examples presented in this work).
This is echoed by evidence from neuroscience that many
forms of human reasoning do not require natural language
(Claim 2.7). Nevertheless, the phrase “CoT reasoning” re-
mains popular (Wang et al. 2023; Ling et al. 2023; Wang &
Zhou 2024; inter alia), fueling the conflation of this useful
mode of expression and the reasoning process itself.

Serial CoT text naturally lends itself to human-interpretable
explanations of multi-step processes. However, there is no
innate requirement that CoT verbalizes the exact applica-
tion of rules, nor that prior beliefs and current evidence
can be incorporated in a principled fashion. Further, it
is well-established that LLM CoT provides no guarantees
that the latent reasoning process of the AI is faithfully con-
veyed (Turpin et al., 2023; Lyu et al., 2023; Li et al., 2025;
Manuvinakurike et al., 2025; Barez et al., 2025; Stechly
et al., 2025; Kambhampati et al., 2025). Thus, we con-
tend that r-zombies could feasibly produce persuasive yet
unsound or adversarial CoT with no faithful relation to in-
ternal data generating mechanisms.

As an example, consider stream of consciousness (SoC) as
a form of CoT that does not represent reasoning (James,
1890; Humphrey, 1954). SoC is a continuous flow of serial,
unfiltered, and unstructured mental states, similar to con-
cepts like wandering thoughts or daydreams. While these

inner monologue-esque narrative streams can be expressed
as CoT, there is no requirement that SoC represents any log-
ical progression, and indeed it may be completely irrational
(Humphrey, 1954). We observe that unfaithful CoT, as can
be produced by current LLMs, at time resembles SoC more
than reasoning. The researcher bears the onus of proving
that LLM CoT is more than SoC.

Alternative Definition C.9. Reasoning is test-time scaling.

Scaling test-time compute (Snell et al., 2025) is a dominant
strategy for improving reasoning benchmark performance
(Bi et al., 2024; Chollet et al., 2024; Muennighoff et al.,
2025). In this vein, Ye et al. (2025) take thinking and rea-
soning synonymously, defining these as “the ability to take
more time and compute during inference with the goal of
producing a higher quality output to a given input.” This
evokes System 2 thinking: the slower, more deliberative,
intentional, and logical mode of reflection modeled by Kah-
neman (2011). Like search and CoT, test-time scaling is
a means of facilitating reasoning that is nevertheless not
necessary for reasoning. See Def. 2.4 (which says nothing
of the scale of computational resources and admits trivial
implementations) and Example B.2 as a counterexample.
Additionally, we can imagine an r-zombie that adversarially
extends its processing time to emulate deliberation or Sys-
tem 2 thinking, without actually engaging in the rule-based
mechanisms of valid reasoning. Thus, test-time scaling is
not reasoning in itself.

The following two definitions share a common shortcoming.

Alternative Definition C.10. Reasoning is correct output.

Alternative Definition C.11. Reasoning is strong perfor-
mance on reasoning tasks (Def. E.1): benchmark tasks that
would require a human test-taker to perform reasoning.

Generative AI papers that target “strong reasoning perfor-
mance” often do not define reasoning (Muennighoff et al.,
2025), inadvertently contributing to the conflation of task ac-
curacy and the reasoning process itself. Our main disagree-
ments with Alternative Defs. C.10 and C.11 are described
in §1.1. In short, the output-based view (conflating process
and product) and success on benchmarks is not sufficient for
proving that a system can reason. Relying on empirical task
evaluation alone is especially fraught when the form of rea-
soning under study does not feature known or unique ground
truth outputs, as in moral reasoning (Snoswell et al., 2026)
or exploratory problem settings (e.g., scientific discovery).
We direct the reader to Bowman & Dahl (2021); Cheng et al.
(2025); Alaa et al. (2025); Weidinger et al. (2025); Wallach
et al. (2025); Mitchell (2025b) for further reference on the
problems associated with benchmarking.
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D. Extended Discussions
D.1. Epistemic Trust in Generative AI & AI Reasoning

In psychology, trust can be framed as a mechanism for miti-
gating uncertainty, reducing resource costs when engaging
with external entities, and increasing the probability of suc-
cessful outcomes (Lukyanenko et al., 2022). Science is
fundamentally a “collective epistemic enterprise,” and as
such epistemic trust (Def. E.5) underpins scientific integrity
through two main social contracts: (1) successful collabora-
tion requires that scientists trust the information provided
by each other, and (2) societal investment requires that the
lay public trusts the information provided by scientists.

Currently, epistemic trust in AI faces challenges both within
the scientific community and with respect to public percep-
tion. Reports of public trust vary heavily: 39% of American
respondents predicted that AI will be more beneficial than
harmful, versus 83% of Chinese respondents (Maslej et al.,
2025); 30% of Swiss respondents believed AI to be com-
pletely unacceptable (up from 23%), while 26% supported
human-only decision-making (up from 18%) (Baumann
et al., 2025); only 14% of UK respondents predicted that AI
will have a positive impact on society, with negative percep-
tion increasing (CDEI, 2023). At the same time, pervasive
mistrust coincides with conflicting phenomena: escalating
capital investment and surging user uptake. OpenAI reports
700 million weekly active users for ChatGPT alone (Ope-
nAI, 2025), while 88% of survey respondents regularly used
AI in at least one business function (McKinsey, 2025).

D.2. Historical Perspectives on Reasoning

Philosophy, Cognitive Science & the Social Sciences

The study of reasoning spans millenia of qualitative and
quantitative inquiry. We provide a brief and nonexhaustive
summary of historical contributions in the humanities, social
sciences, and studies of cognition and the brain.

The history of reasoning is, in many ways, the history of
logic and epistemology. Major contributions in ancient
logic emanated from early Greek, Indian, Chinese, and
Arab cultures, among others. The ancient Greek polymath
Aristotle (384–322 BC) provided an early systematic study
of logic, establishing deductive reasoning via syllogisms
(Smith, 2022). Aristotle categorized reasoning into prior
analytics (formal structural argumentation via syllogisms,
analogous to notions of validity discussed in this position)
and posterior analytics (focused on demonstration, defini-
tion, scientific knowledge, and inductive reasoning, where
premises must be true, primary, immediate, and necessary;
this notion maps roughly to soundness and operationaliza-
tion). We refer the reader to Bobzien (2020) for further
discussion of ancient traditions of the West.

In India, orthodox schools of Hindu philosophy such as
Nyāya developed rigorous theories of logic and epistemol-
ogy (Britannica, 2017). Various schemas of inference were
proposed for the evaluation of knowledge and arguments
(e.g., premise, reason, example, application, and conclu-
sion). In the thirteenth century, the Navya-Nyāya or Neo-
Logical school of Indian philosophy further systematized
these logical systems, anticipating aspects of modern set the-
ory and influencing later logicians such as Babbage, Boole,
and DeMorgan. See Gillon (2024) for further discussion of
logic in classical Indian philosophy.

The classic epistemological debate over rationalism ver-
sus empiricism concerns the sources by which we obtain
knowledge about our external world (Markie & Folescu,
2023). While the rationalists emphasized deduction and
mathematical certainty (as represented by French polymath
René Descartes (1596–1650), German polymath Gottfried
Wilhelm Leibniz (1646–1716), et al.), the empiricists em-
phasized sensory experience, causation, and probability (as
represented by the English philosopher John Locke (1632–
1704), Scottish philosopher David Hume (1711–1776), et
al.). German philosopher Immanuel Kant (1724–1804) pre-
sented a critique of pure reason that attempted to bridge
rationalism and empiricism. Modern formal logic (as rep-
resented by Gottlob Frege (1848–1925), Bertrand Russell
(1872–1970), et al.) overhauled Aristotelian logic into sym-
bolic mathematical logic. For more recent treatments of
reasoning vis-à-vis logic and epistemology in the computer
science community (with emphases on probabilistic reason-
ing and uncertainty), we refer the reader to Fagin & Halpern
(1987); Pearl (1990); Fagin & Halpern (1994); Fagin et al.
(2004); Pearl (2014); Halpern (2017).

Cognitive science, neuroscience, and psychology have con-
tributed a brain- or mind-centric account of reasoning. Dual-
process theories of reasoning have been explored (and chal-
lenged) for centuries (Evans & Stanovich, 2013), perhaps
most famously with Daniel Kahneman’s theory of System
1 and System 2 thinking in psychology and behavioral eco-
nomics (Sloman, 1996; Kahneman, 2011). While System
1 is associated with fast, automatic, frequent, and intuitive
forms of cognition (e.g., performing basic arithmetic, catch-
ing a ball), System 2 entails slow, deliberative, effortful, and
logical cognition (e.g., proving a theorem). System 2 think-
ing is sometimes referenced as a metaphor for inference-
time scaling in generative AI. Herbert Simon’s theories on
bounded rationality, reasoning, and decision-making under
uncertainty had a significant impact on computer science,
economics, and cognitive psychology. As in this position,
Simon (2000) argues that interrogating the nature and qual-
ity of the process of reasoning, and not only its products,
clarifies a reasoner’s limitations (original emphasis):

A theory of bounded rationality, then, will be as
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much concerned with procedural rationality, the
quality of the processes of decision, as with sub-
stantive rationality, the quality of the outcome. To
understand the former, one must have a theory
of the psychology of the decision maker; to un-
derstand the latter, one needs have only a theory
of the goal (the utility function) and the external
environment. [...] When rationality is associated
with reasoning processes, and not just with its
products, limits on the abilities of Homo sapiens
[sic] to reason cannot be ignored. So the reason-
ing we find in the classics sounds very different
from the calculus of maximization of expected
utility in modern neoclassical economics. Taking
account of process as well as product is compati-
ble, as neoclassical thinking is not, with the idea
that, while human beings usually have reasons for
what they do, these are seldom the best reasons,
and are seldom consistent over the whole range
of their choices.

Automated Reasoning Across “Three Waves” of AI

Foundational work on automated reasoning included produc-
tion systems (Davis & King, 1984; Hayes-Roth, 1985), logic
programming (Lloyd, 2012), belief revision (Gärdenfors,
1988; Van Ditmarsch et al., 2008) and early proof assistants
(Boyer & Moore, 1975; de Bruijn, 1983; Gordon, 1985;
Coquand & Huet, 1986), as well as theoretical work on the
typed lambda calculus and structural proof theory (Howard
et al., 1980; Negri & Von Plato, 2008). The symbolic, rule-
based perspective of these approaches dominated early AI
research but fell out of favor by the late 1980s, following the
collapse of the specialized AI hardware market, unresolved
scalability issues in expert systems, and DARPA funding
cuts (Fouse et al., 2020). This period is popularly consid-
ered the end of the “First Wave of AI” and the beginning of
an “AI Winter” of reduced global funding and interest in AI.

In contrast, statistical learning and neural networks drove the
fast-paced “Second Wave of AI,” as the dominance of deep
learning overshadowed rule-based AI through the 2010s
(Fouse et al., 2020). Prototypical AI systems from this wave
prioritized data-driven approaches, viewed models primarily
as black boxes, and provided limited explicit reasoning and
transparency. Sutton’s “Bitter Lesson” (Sutton, 2019) was
particularly influential in expressing disillusionment with
domain-specific understanding in AI, as contrasted with
the superior performance of systems relying primarily on
scaling laws of increasing compute and training data.

In recent years, a broad push toward the goal of language
reasoning models, as well as renewed interest in formal
methods and neuro-symbolic architectures, have challenged
the perspective that symbolic AI is of mere historical in-
terest (Huang & Chang, 2023; Belle & Marcus, 2025). In-

teractive theorem provers such as Lean and Isabelle/HOL
(Paulson & Wenzel, 2013; De Moura et al., 2015; Blanchette
et al., 2016) have demonstrated substantial progress toward
scalable mathematical formalization and verification. In
parallel, the rapid rise of neuro-symbolic architectures in
an emerging “Third Wave of AI” (Garcez & Lamb, 2023)
has enabled capabilities such as latent program induction
(Neelakantan et al., 2015; Macfarlane & Bonnet, 2025) and
theorem-proving systems that tightly integrate symbolic
solvers with neural components (Xin et al., 2024; Chervonyi
et al., 2025). Further advances in large-scale ML, such
as retrieval-augmented generation, model-based planning,
and world modeling, have strengthened the case for revis-
iting classical ideas under modern computational regimes
(Matsuo et al., 2022; Gao et al., 2023; Guan et al., 2023).

This shift has been reinforced by growing awareness of
the intrinsic limitations of current LLMs (see §1.1), includ-
ing hallucination (Xu et al., 2024; Bastounis et al., 2024),
reliance on heuristics or non-generalizing “shortcut solu-
tions” (Liu et al., 2022; Chollet et al., 2024; Xu et al., 2025;
Mirzadeh et al., 2025), and formal complexity-theoretic
boundaries (Merrill et al., 2022; Merrill & Sabharwal, 2023).
We echo Belle & Marcus (2025) in hypothesizing that these
trends may collectively signal a timely re-evaluation of
rule-based AI, not as an abandoned “First Wave” idea, but
as a potential component in next-generation architectures
and in the pursuit of more reliable, transparent, and general-
izable reasoning systems.

E. Glossary
Definition E.1 (Reasoning task). In the AI evaluation set-
ting, we consider a reasoning task to be a task that, when
previously unseen, would require the average human solver
to perform reasoning. Thus, the notion of a reasoning task
is tied to expectations on human problem solving and is
therefore anthropocentric.

Definition E.2 (Operational definition, American Psycho-
logical Association). “A description of something in terms
of the operations (procedures, actions, or processes) by
which it could be observed and measured. For example,
the operational definition of anxiety could be in terms of
a test score, withdrawal from a situation, or activation of
the sympathetic nervous system. The process of creating an
operational definition is known as operationalization.”

Definition E.3 (Formal verification, De Moura et al. 2015).
“Formal verification involves the use of logical and com-
putational methods to establish claims that are expressed
in precise mathematical terms. These can include ordinary
mathematical theorems, as well as claims that pieces of
hardware or software, network protocols, and mechanical
and hybrid systems meet their specifications. In practice,
there is not a sharp distinction between verifying a piece of
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mathematics and verifying the correctness of a system: for-
mal verification requires describing hardware and software
systems in mathematical terms, at which point establishing
claims as to their correctness becomes a form of theorem
proving. Conversely, the proof of a mathematical theorem
may require a lengthy computation, in which case verifying
the truth of the theorem requires verifying that the computa-
tion does what it is supposed to do.”

Definition E.4 (Intelligence, Chollet 2019). Skill-
acquisition efficiency over a range of tasks, controlling for
priors, experience, and generalization difficulty.

Definition E.5 (Epistemic trust). Per Wilholt (2013), “To
invest epistemic trust in someone is to trust her in her capac-
ity as provider of information.” Fonagy & Allison (2014)
consider epistemic trust to be “an individual’s willingness
to consider new knowledge from another person as trustwor-
thy, generalizable, and relevant to the self.” Similarly, Irzik
& Kurtulmus (2019) argue that “Epistemic trust is about
taking someone’s testimony that P as a reason to believe
that P on the assumption that she is in a position to know
whether P and will express her belief truthfully... In the
case of scientists, the requirement of good will for epistemic
trust amounts to their commitment to the ethical norms of
their trade and their sense of obligation to truthfully and
accurately share significant knowledge with the public.”

Definition E.6 (Construct validity, Sjøberg & Bergersen
2022). A construct is a concept that is not directly mea-
surable, but is represented by indicators at the operational
level to make it measurable. The validity of a construct
(i.e., construct validity) is defined by how adequate a con-
cept definition is and how well the indicators represent the
concept.
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