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Presentation overview
1 Background

1. What is causal fairness analysis?

2. How can we detect direct discrimination?

3. A new causal discovery method for practical use.

4. Real-world fairness analysis on clinical data.
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Fairness with respect to protected attributes
1 Background

• Fairness is essential in policy design and algorithmic decision-making.

• Under the law, mechanism matters:
1. Direct discrimination.
2. Indirect unfairness.
3. Spurious unfairness (common cause).

• Problem: Statistical associations cannot disentangle mechanisms.
• Solution: Causal inference can (with prior knowledge).
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Case study: Is liver transplant allocation fair?
1 Background

Liver transplantation is a critical therapeutic for acute liver failure.

Sex-based disparities have been observed.1,2
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Case study: Is liver transplant allocation fair?
1 Background

Fairness query: Are sex-based disparities in liver allocation due to direct discrimination?

Graphical query: Is patient sex (S) a causal parent of liver allocation (L)?

Sex is a parent (direct cause)
Sex is an ancestor (indirect cause)
Common cause (spurious)
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Causal Fairness Analysis (CFA)
1 Background

Theoretical framework for disentangling mechanisms of unfairness using
structural causal models (SCMs) and graphical modeling.
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Graphical signatures of direct discrimination
1 Background

1. Structural direct criterion (SDC).3

2. Direct effect estimation.
— Controlled direct effect.4
— Natural direct effect.4
— Counterfactual direct effect.5
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Structural direct criterion (SDC)
1 Background

Detecting direct discrimination == causal parent discovery.3
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Weighted Controlled Direct Effect (WCDE)
1 Background

• WCDE: Expected change in outcome as the exposure changes, adjust-
ing for mediators M (blocking indirect effects).

• Given exposure X, outcome Y, mediators M′ ∈ pa(Y), and covariates S
that control for confounding of both {X, Y} and {M′, Y}6,

WCDE =
∑
m′

(
E[Y | do(x,m′)]− E[Y | do(x∗,m′)]

)
P(m′) (1)

=
∑
m′

∑
s

(
E[Y | x, s,m′]− E[Y | x∗, s,m′]

)
P(s)P(m′). (2)

WCDE is nonzero if and only if X is a parent of Y.
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What if the graph is unknown?
1 Background

We can learn it from observational data via causal discovery.

• Prior methods pose limitations:
— High sample and time complexity.
— Disagreement with expert knowledge.7,8

— Conflicting fairness conclusions.9

• What if we tailor discovery to CFA for direct discrimination?
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LD3: Contributions
2 Local Discovery for Direct Discrimination (LD3)

• Efficient parent discovery.
— Linear no. of conditional independence tests w.r.t. total input variables.
— On real-world data, baselines required 11–1021× more tests and 46–5870× more

time compared to LD3.

• Addresses both indicators of direct discrimination.
1. SDC.3 Results from LD3 directly evaluate the SDC.
2. WCDE.4 LD3 returns a valid adjustment set for the WCDE.

• Real-world fairness analysis.
— LD3 recovered known relations more effectively than baselines.
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Learn labels, not the global graph
2 Local Discovery for Direct Discrimination (LD3)

• Goal: Learn the relationship of each variable to the protected attribute
and outcome to identify parents of outcome.

• Any variable can take on exactly one of eight causal roles (labels)
w.r.t. a cause-effect pair of interest, as shown in Maasch et al. (UAI’24).10

• Local discovery: We learn these labels, and abstract away the rest.
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Learn labels, not the global graph
2 Local Discovery for Direct Discrimination (LD3)

Learning causal partition labels is more computationally efficient than learning the full graph.
Table from Maasch et al. (UAI’24).10
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Learn labels, not the global graph
2 Local Discovery for Direct Discrimination (LD3)

Does the red edge exist? Finding other parents of Y can tell us.
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(A) Unknown graph of input data. (B) WCDE adjustment set returned by LD3.
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LD3: faster, fewer tests, better parent recall
2 Local Discovery for Direct Discrimination (LD3)

Benchmark: Linear-Gaussian model of grape production11 from bnlearn.12
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Is liver allocation fair?
3 Real-world causal fairness analysis: Is liver allocation fair?

• Fairness query: Are sex-based disparities due to direct discrimination?
• Graphical query: Is patient sex a causal parent of liver allocation?
• Data: Ntl. Standard Transplant Analysis and Research (STAR), 2017-2019.13

• Sample size: n = 21, 101 (36% female).
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LD3 detects known relations
3 Real-world causal fairness analysis: Is liver allocation fair?
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SDC = 1, WCDE ̸= 0: All methods detect sex ( S ) as a parent of liver allocation ( L ).1

Known parents: MELD score ( IM ), age ( IA ), region ( RE ), active exception case ( AE ).
1Same independence test, same significance level.
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Thank you! Any questions?
maasch@cs.cornell.edu

arXiv:2405.14848 jmaasch.github.io
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https://arxiv.org/abs/2405.14848
https://jmaasch.github.io/
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Assumptions

1. Y has no descendants in the observed variable set. This is satisfied
when Y is a terminal variable in the temporal ordering (e.g., outcome is
death, or a policy or algorithmic decision made at a known time point).

2. All parents of Y are observed. Latent variables that are not parents of
Y are permissible. Thus, this is a milder condition than assuming causal
sufficiency.
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Pseudocode
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Graphical criterion for identifying the WCDE
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Variance inflation from unnecessary adjustment

Adjusting for the set ADE returned by LD3 prevents unnecessary adjustment. Adjusting for all
input variables Z can inflate estimator variance, as illustrated for linear-Gaussian (top) and

quadratic-categorical (bottom) data generating processes where |Z| = 17 (best values in bold).
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STAR liver data
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STAR liver data
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COMPAS results
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