

Local Discovery by Partitioning

Polynomial-Time Causal Discovery Around Exposure-Outcome Pairs

Jacqueline Maasch

maasch@cs.cornell.edu | arXiv:2310.17816

Joint work by: J Maasch¹, W Pan², S Gupta³, V Kuleshov¹, K Gan⁴, F Wang²

¹Computer Science, Cornell Tech

²Population Health Sciences, Weill Cornell Medicine

³Machine Learning, Carnegie Mellon University

⁴Operations Research and Information Engineering, Cornell Tech

POMS Annual Conference | Minneapolis, MN | 27 April 2024

Causal inference with observational data

1 Background

1. Identify the causal quantity of interest.

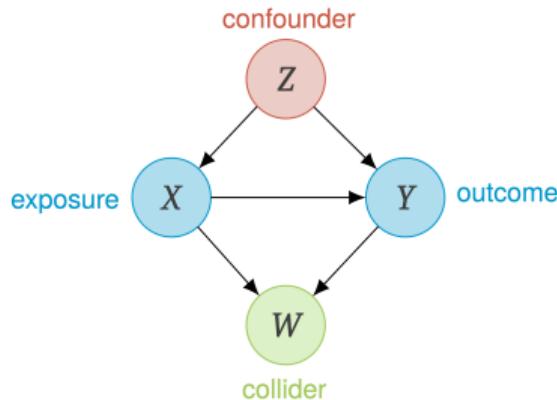
- *Example:* Average treatment effect (ATE) of a drug on a disease state.
- A graphical model of the data generating process (DGP) enables identifiability.
- We can learn this model with data-driven methods.

2. Perform inference to estimate this quantity.

- Express the parameter as a function of the DGP.
- Apply estimation methods (e.g., TMLE, doubly robust ML, etc.).

Graphical models for causal effect identification

1 Background

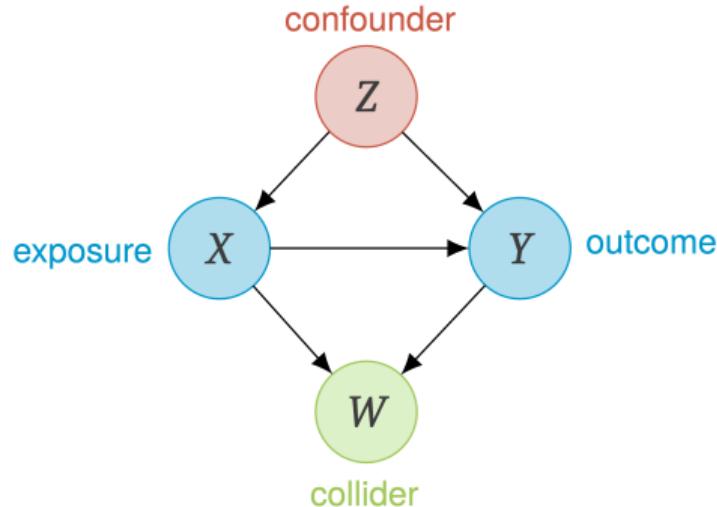


Blocking all **backdoor paths** for $\{X, Y\}$ by adjusting for confounder Z allows for *unconfoundedness* or *conditional exchangeability*: $Y(1), Y(0) \perp\!\!\!\perp X \mid Z$.

This removes *noncausal association* for unbiased ATE estimation.

Graphical models for causal effect identification

1 Background



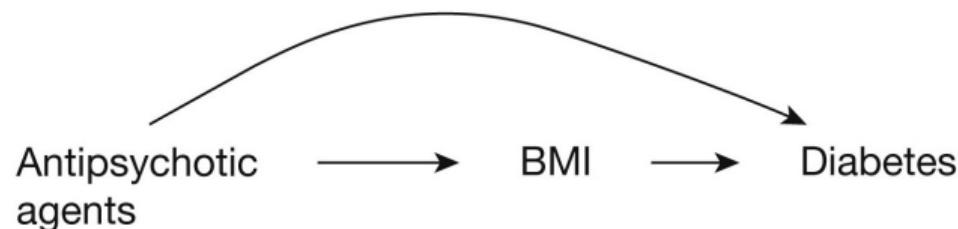
The correct directed acyclic graph (DAG) enables unique identification of the true ATE:

$$\mathbb{E}[Y(1) - Y(0)] = \mathbb{E}_Z[\mathbb{E}[Y | X = 1, Z] - \mathbb{E}[Y | X = 0, Z]]$$

Graphical models for causal effect identification

1 Background

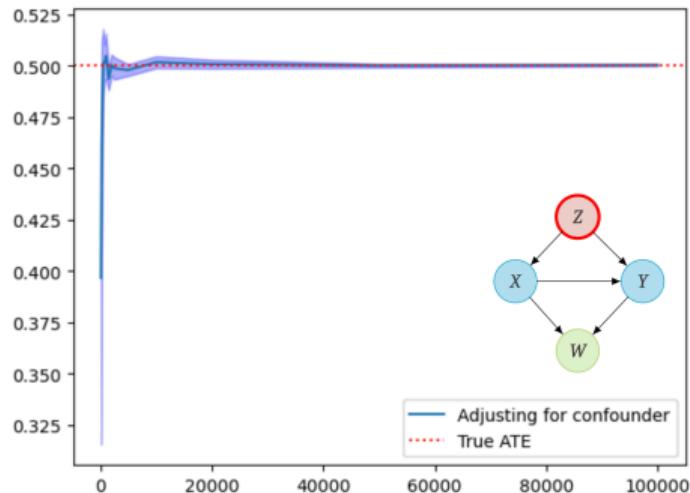
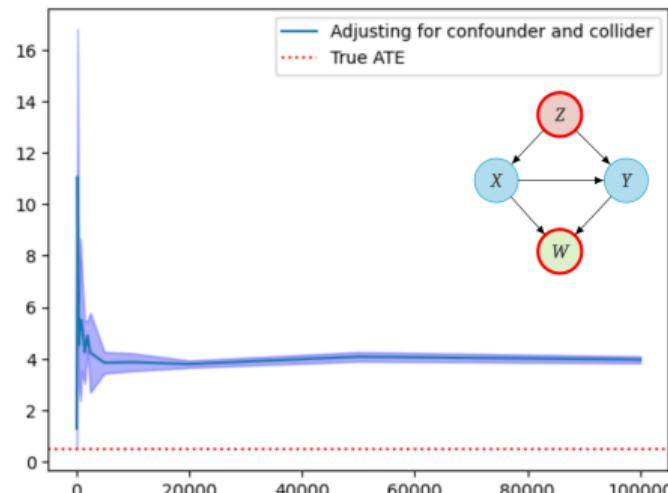
Real-world example: diabetes risk



Whether the patient takes certain antipsychotics is a confounder for BMI and risk of developing diabetes [ECM20].

Effect estimation with a misspecified model

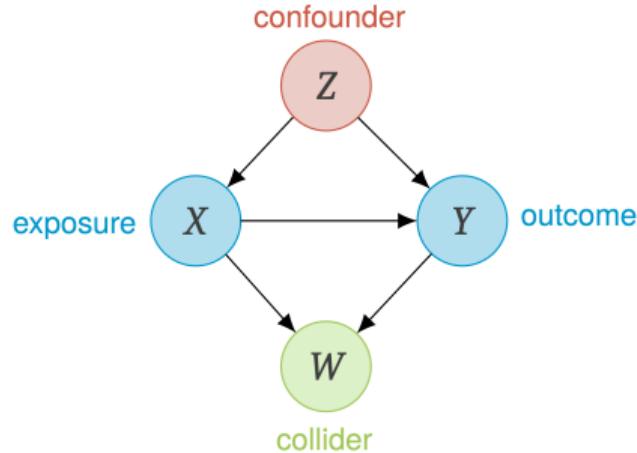
1 Background



ATE estimates converge to the true value when controlling for Z only (left), but remain biased when controlling for $\{W, Z\}$ (right).

Causal discovery: learning structure from data

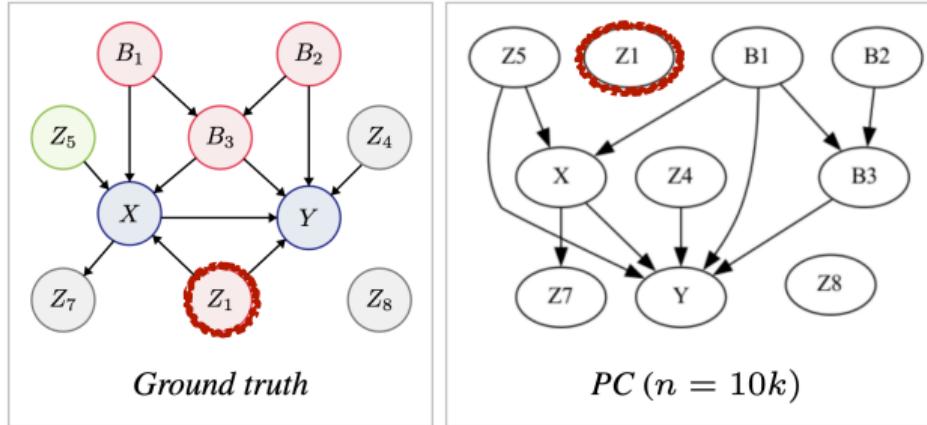
1 Background



- **Data-driven:** Learn the underlying graphical model, with or without prior knowledge.
- **Global discovery:** Learn the entire DAG from data.
- **Local discovery:** Learn only the relevant substructures (e.g., role of Z only).

Failure modes of global discovery

1 Background



- **Constraint-based methods PC and FCI** [SGS00] use conditional independence tests to identify the undirected skeleton of the graph and orient edges.
- **Drawbacks:** Exponential time complexity, high sample complexity, order dependence.

Local Discovery by Partitioning (LDP)

2 Local Discovery by Partitioning (LDP)

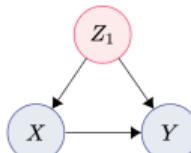
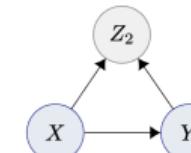
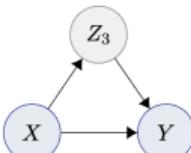
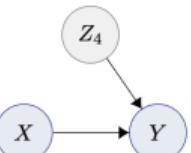
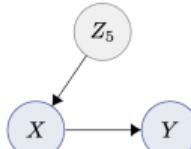
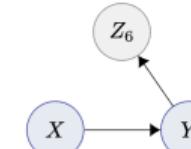
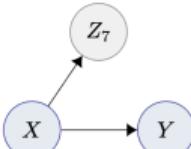
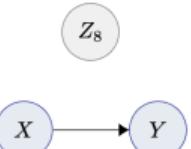
To address these failure modes for the setting of downstream causal effect estimation:

1. We prove the existence of an exhaustive **causal partition taxonomy** defining any arbitrary DAG w.r.t. the exposure and outcome.
2. We propose a **local discovery procedure** that learns causal partitions directly.
3. LDP is asymptotically **guaranteed to return a confounder set** for unbiased ATE estimation.

Local causal partition learning

2 Local Discovery by Partitioning (LDP)

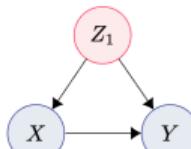
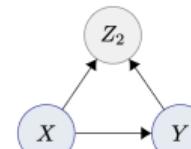
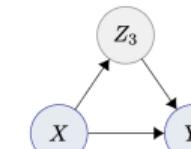
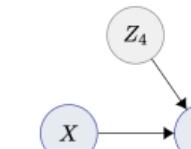
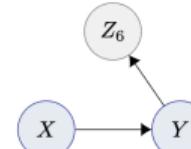
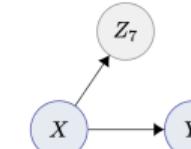
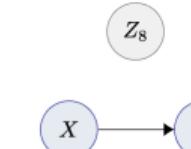
For downstream inference, we only care about the **local structure** relative to $\{X, Y\}$.

 <p>Case 1: Z is a confounder.</p>	 <p>Case 2: Z is a collider.</p>	 <p>Case 3: Z is a mediator.</p>	 <p>Case 4: Z causes outcome.</p>
 <p>Case 5: Z causes exposure.</p>	 <p>Case 6: Outcome causes Z.</p>	 <p>Case 7: Exposure causes Z.</p>	 <p>Case 8: Z is isolated.</p>

Local causal partition learning

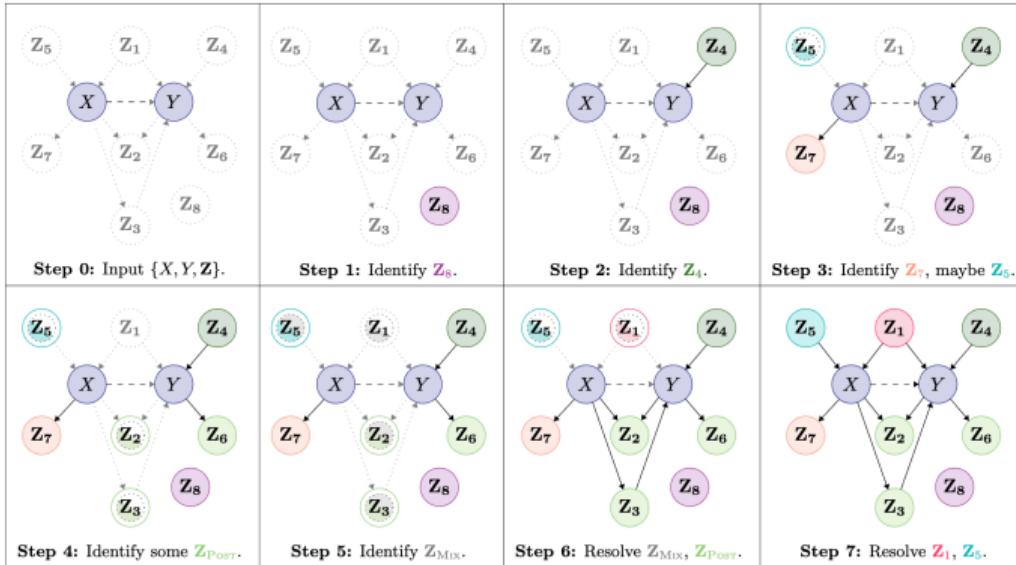
2 Local Discovery by Partitioning (LDP)

Universal property of DAGs: There exists a unique partitioning of the variables into eight exhaustive, mutually exclusive subsets defined by their relation to $\{X, Y\}$.

 <p>Case 1: Z is a confounder.</p>	 <p>Case 2: Z is a collider.</p>	 <p>Case 3: Z is a mediator.</p>	 <p>Case 4: Z causes outcome.</p>
 <p>Case 5: Z causes exposure.</p>	 <p>Case 6: Outcome causes Z.</p>	 <p>Case 7: Exposure causes Z.</p>	 <p>Case 8: Z is isolated.</p>

LDP learns causal partitions directly

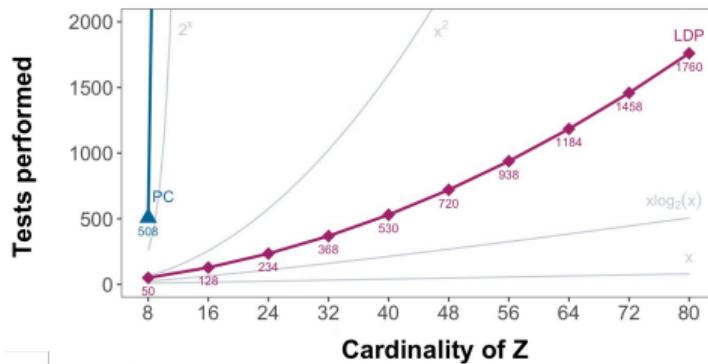
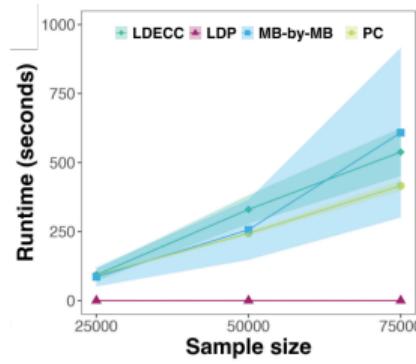
2 Local Discovery by Partitioning (LDP)



Partition labels can be obtained with nonparametric or parametric independence tests.

Fewer tests and faster runtimes

2 Local Discovery by Partitioning (LDP)

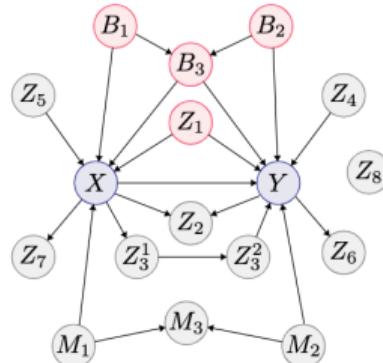


- **Polynomial-time:** Worst-case quadratic number of CI tests w.r.t. cardinality.
 - *Left:* Local and global constraint-based baselines are worst-case exponential.
 - *Right:* On a bnlearn benchmark (33 nodes), LDP ran **1400× to 2500× faster** than PC.

LDP for confounder discovery

2 Local Discovery by Partitioning (LDP)

Asymptotically guaranteed to return a **valid adjustment set** (VAS) under **latent confounding** and mild graphical conditions.

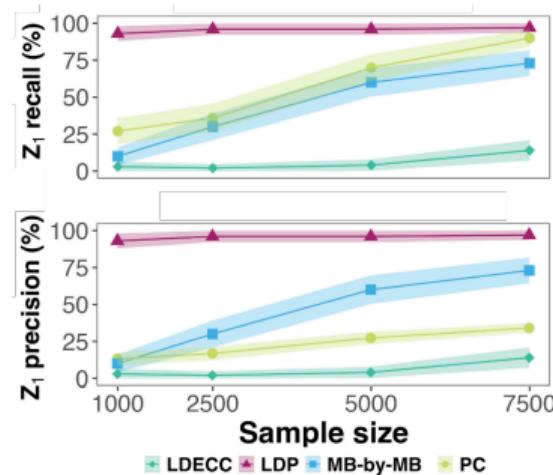


$\{Z_1, B_1, B_2, B_3\}$ is a VAS of confounders for $\{X, Y\}$:

- 1) Blocks all backdoor paths and 2) contains no descendants of X [PJS17].

LDP for confounder discovery

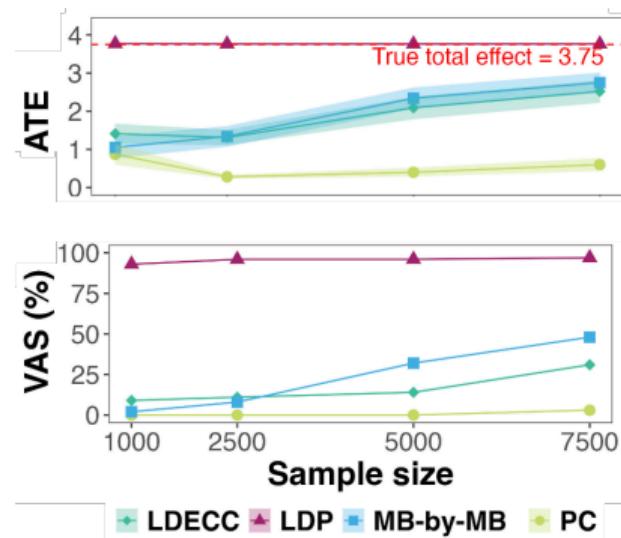
2 Local Discovery by Partitioning (LDP)



- **Sample efficient:** Most conditioning sets of size one or two.
 - Local and global baselines use larger conditioning set sizes, on average.
 - LDP is more performant on small finite samples.

LDP for precise and unbiased ATE estimation

2 Local Discovery by Partitioning (LDP)



Results on a 10-node linear-Gaussian DAG.

Thank you! Any questions?

maasch@cs.cornell.edu

arXiv:2310.17816

jmaasch.github.io

References

[ECM20] M. Etminan et al. "Using causal diagrams to improve the design and interpretation of medical research". In: *Chest* 158.1 (2020), S21–S28.

[SGS00] P. Spirtes et al. *Causation, Prediction, and Search*. en. Ed. by J. Berger et al. Vol. 81. Lecture Notes in Statistics. New York, NY: Springer New York, 2000. doi: 10.1007/978-1-4612-2748-9.

[PJS17] J. Peters et al. *Elements of causal inference: foundations and learning algorithms*. Cambridge, Massachusetts: The MIT Press, 2017.

[Lu+21] H. Lu et al. "Revisiting Overadjustment Bias". en. In: *Epidemiology* 32.5 (2021), e22–e23. doi: 10.1097/EDE.0000000000001377.

[SCP09] E. F. Schisterman et al. "Overadjustment Bias and Unnecessary Adjustment in Epidemiologic Studies". en. In: *Epidemiology* 20.4 (2009), pp. 488–495. doi: 10.1097/EDE.0b013e3181a819a1.

[HHR04] M. A. Hernán et al. "A Structural Approach to Selection Bias". en. In: *Epidemiology* 15.5 (2004), pp. 615–625. doi: 10.1097/01.ede.0000135174.63482.43.

[EW14] F. Elwert et al. "Endogenous Selection Bias: The Problem of Conditioning on a Collider Variable". In: *Annual Review of Sociology* 40.1 (2014), pp. 31–53. doi: 10.1146/annurev-soc-071913-043455.

[HA22] M. J. Holmberg et al. "Collider bias". In: *JAMA Guide to Statistics and Methods* 327.13 (2022).

[Pea01] J. Pearl. "Direct and Indirect Effects". In: *Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence*. 2001.

[Pea12] J. Pearl. "On a Class of Bias-Amplifying Variables that Endanger Effect Estimates". en. In: (2012).

[SLG16] M. E. Schnitzer et al. "Variable Selection for Confounder Control, Flexible Modeling and Collaborative Targeted Minimum Loss-Based Estimation in Causal Inference". In: *The International Journal of Biostatistics* 12.1 (2016), pp. 97–115. doi: 10.1515/ijb-2015-0017.

[Lee+22] J. J. Lee et al. "Causal determinants of postoperative length of stay in cardiac surgery using causal graphical learning". In: *The Journal of Thoracic and Cardiovascular Surgery* (2022), S002252232200900X. doi: 10.1016/j.jtcvs.2022.08.012.

Causal Markov and faithfulness

Faithfulness Assumption

Recall the Markov assumption: $X \perp\!\!\!\perp_G Y | Z \implies X \perp\!\!\!\perp_P Y | Z$

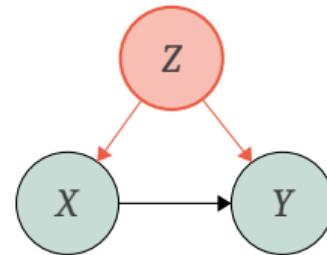
Causal graph \longrightarrow Data

Causal graph \longleftarrow Data

Faithfulness: $X \perp\!\!\!\perp_G Y | Z \iff X \perp\!\!\!\perp_P Y | Z$

Preliminaries: Non-causal associations

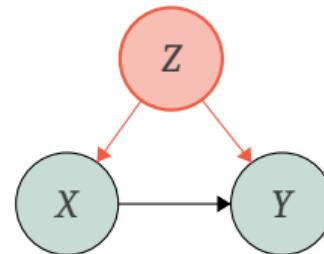
Definition 2.3 (Backdoor path, Pearl 2009). Any non-causal path between exposure X and outcome Y with an edge pointing into X ($\cdots \rightarrow X$).



Valid adjustment under the backdoor criterion

Definition 2.4 (Valid adjustment under the backdoor criterion, Peters et al. 2017). Let \mathbf{A}_{XY} be an adjustment set for $\{X, Y\}$ that does not contain $\{X, Y\}$. \mathbf{A}_{XY} is valid if

1. \mathbf{A}_{XY} contains no descendants of X and
2. \mathbf{A}_{XY} blocks all backdoor paths from X to Y .

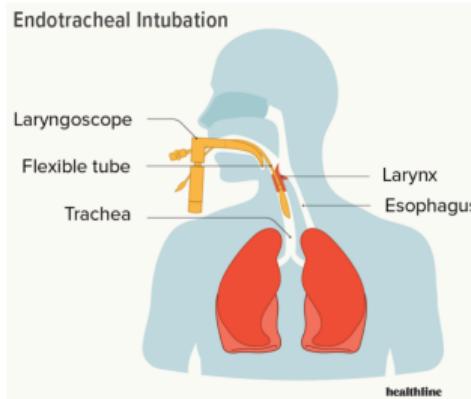
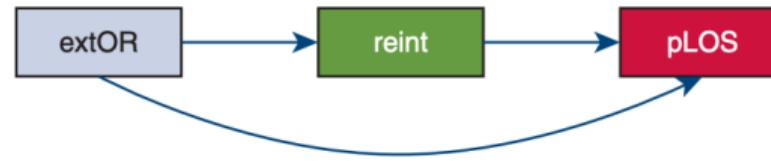


Why not adjust for *everything*?

- **Bias:** Multiple variable types can induce bias when retained for adjustment [Lu+21; SCP09].
 1. Colliders induce selection bias [HHR04; EW14; HA22].
 2. Mediators bias total effects by controlling for indirect effects [Pea01].
 3. Instruments can amplify existing bias or introduce new bias in some settings [Pea12].
- **Variance:** Unnecessary adjustment can inflate the variance of effect estimates [SCP09].
- **Curse of dimensionality:** Unnecessary adjustment can undermine model fitting [SLG16].

Graphical models for causal effect identification

Real-world example: causal determinants of postoperative length of stay



Extubation in the operating room (**extOR**) is a confounder for the effect of reintubation (**reint**) on postoperative length of stay (**pLOS**) after cardiac surgery [Lee+22].

Sufficient conditions for identifiability

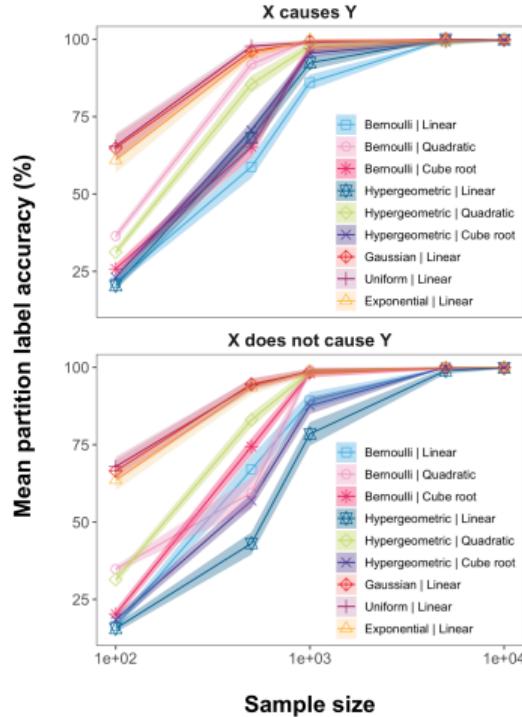
Sufficient conditions for VAS discovery are more relaxed than for correct partitioning.

Sufficient Conditions for Correct Partitioning Given an independence oracle, we define *sufficient* (but not necessary) conditions for asymptotically correct partition labeling:

- C1 The absence of inter-partition active paths (Def. 3.2).
- C2 The existence of at least one Z_4 .
- C3 The existence of at least one Z_5 . Further, all Z_1 are marginally independent of at least one observed Z_5 .
- C4 Causal sufficiency in \mathcal{G}_{XYZ} .

Sufficient Conditions for VAS Identification Per Definition 2.4, a VAS 1) contains no descendants of X and 2) blocks all backdoor paths from X to Y . With Theorem 4.5, we show that the VAS returned by LDP (Partition Z_1) meets both criteria (Lemmas 4.2, 4.4) in the presence of causal insufficiency and arbitrary inter-partition active paths, given Condition C2, Condition C3, and a non-empty $Z_{5 \in \text{adj}(X)}$.

LDP partition correctness



LDP partition correctness

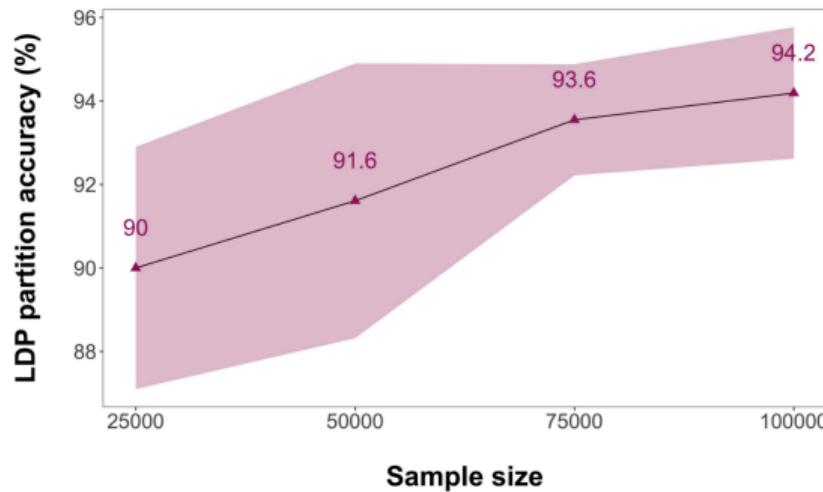
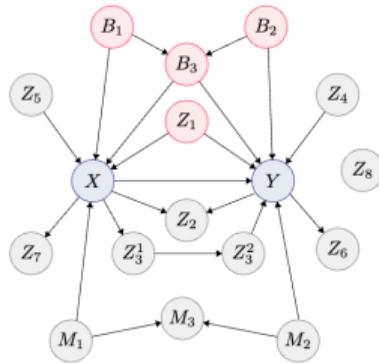


Figure G.1: LDP partition accuracy on the MILDEW benchmark. Mean accuracy was computed for 10 replicate samples from the ground truth DAG using bnlearn [Scutari, 2010]. We measure partition accuracy as the percent of partition labels that are consistent with ground truth. Independence was determined by chi-square tests ($\alpha = 0.005$). Shaded regions represent the 95% confidence interval. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.

LDP partition correctness



LDP correctly partitions 98.7%[97.6, 99.9] of linear-Bernoulli instantiations and 98.7%[98.0, 99.4] of quadratic hypergeometric instantiations of this DAG (100 replicates each, $n = 20k$).

LDP partition correctness

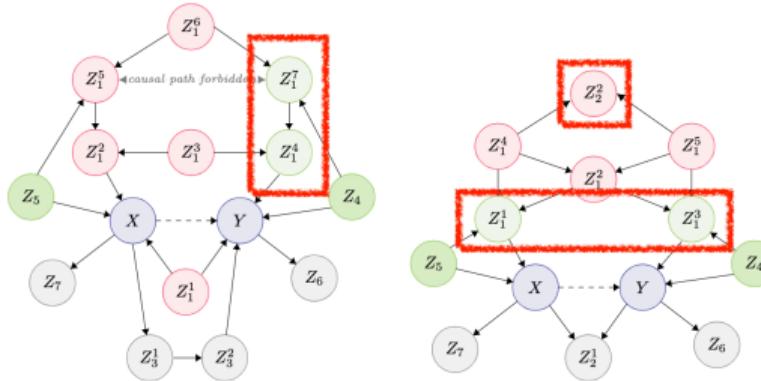
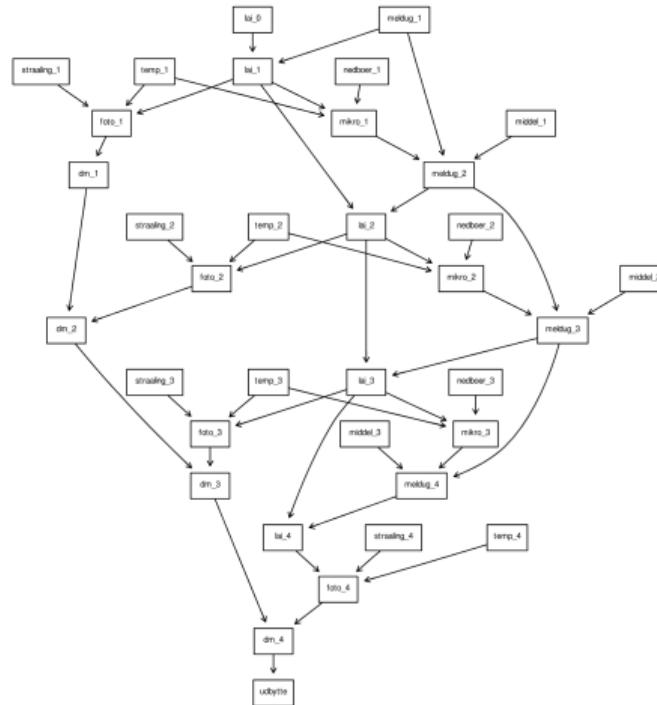


Figure D.1: Two DAGs that exemplify the behavior of LDP for valid adjustment set detection in the presence of inter-partition active paths. All red nodes will be placed in \mathbf{Z}_1 by LDP. All confounders for $\{X, Y\}$ that are colored green will be mislabeled due to their marginal dependence on Z_4 or Z_5 .

Left: Per Lemma D.20, Z_1^1 , Z_1^3 and Z_1^5 will be placed in \mathbf{Z}_1 . Despite their marginal dependence on the only Z_5 in this structure, Z_1^2 and Z_1^6 will never be placed in \mathbf{Z}_{POST} due to the presence of Z_1^1 , as $Z_1^2 \perp\!\!\!\perp Z_1^1$ and $Z_1^6 \perp\!\!\!\perp Z_1^1$. Together, the confounders highlighted in red ($\{Z_1^1, Z_1^2, Z_1^3, Z_1^5, Z_1^6\}$) constitute a valid adjustment set that blocks all backdoor paths and contains no descendants of X . No causal path of either directionality is permissible between Z_1^5 and Z_1^6 per Proposition D.18. If this path were to contain a confounder analogous to Z_1^3 , this would be permissible and this node would be placed in \mathbf{Z}_1 by LDP.

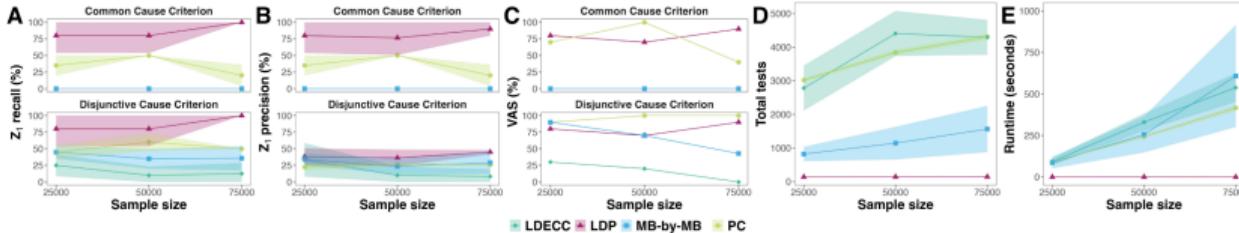
Right: This DAG contains a modified butterfly structure, which will be partially retained in \mathbf{Z}_1 ($\{Z_1^2, Z_1^4, Z_1^5\}$) while still blocking all backdoor paths. As there is only one Z_5 in this structure and no backdoor path whose members are marginally independent of Z_1^1 , this confounder will be mislabeled as \mathbf{Z}_{POST} at Step 6. This DAG also illustrates a case where a member of \mathbf{Z}_2 (Z_2^2) is placed in \mathbf{Z}_1 . Inclusion of Z_2^2 does not violate the validity of the adjustment set returned by LDP, as this node is not a descendent of X and adjusting for $\{Z_1^2, Z_1^4, Z_1^5\}$ prevents collider bias.

The MILDEW benchmark



VAS discovery

MILDEW (FIGURE E.3)



LINEAR-GAUSSIAN 10-NODE DAG (FIGURE 3)

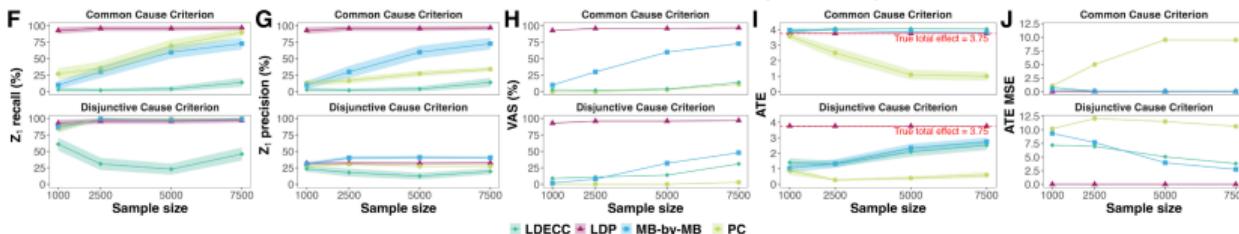


Figure 7: Baselines on MILDEW ($|Z| = 31$) and a linear-Gaussian DAG ($|Z| = 8$) (Tables G.8, G.9). Independence was determined with chi-square tests for MILDEW ($\alpha = 0.001$) and Fisher-z tests for the linear-Gaussian DAG ($\alpha = 0.01$). Results were averaged over 10 and 100 replicates per sample size for MILDEW and the linear-Gaussian DAG, respectively (95% confidence intervals in shaded regions). Precision and recall for Z₁ identification were computed per adjustment set.

VAS with latent variables

LATENT	VAS EXISTS	Z ₅ CRIT	% VALID
B ₁	✓	✓	100
B ₂	✓	✓	99
Z _{4a}	✓	✓	99
M ₂	✓	✓	100
Z _{5a}	✓	✓	99
M ₁	✓	✓	100
Z ₁	✗	✗	0
B ₃	✗	✗	0

